BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17645869)

  • 1. Atomic force microscopic investigation on the potential early intermediate stages of fibrillogenesis of fibronectin within fibrils.
    Chen Y; Wu Y; Cai J
    Biochem Biophys Res Commun; 2007 Sep; 361(2):391-7. PubMed ID: 17645869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers.
    Gugutkov D; González-García C; Rodríguez Hernández JC; Altankov G; Salmerón-Sánchez M
    Langmuir; 2009 Sep; 25(18):10893-900. PubMed ID: 19735141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying early stages of fibronectin fibrillogenesis in living cells by atomic force microscopy.
    Gudzenko T; Franz CM
    Mol Biol Cell; 2015 Sep; 26(18):3190-204. PubMed ID: 26371081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immuno-atomic force microscopy characterization of adsorbed fibronectin.
    Cheung JW; Walker GC
    Langmuir; 2008 Dec; 24(24):13842-9. PubMed ID: 19360949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic beaded-filament assembly of fibronectin on negatively charged surface.
    Nelea V; Kaartinen MT
    J Struct Biol; 2010 Apr; 170(1):50-9. PubMed ID: 20109553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin.
    Forsprecher J; Wang Z; Nelea V; Kaartinen MT
    Amino Acids; 2009 Apr; 36(4):747-53. PubMed ID: 18604470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the elasticity of fibronectin fibrils: unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy.
    Abu-Lail NI; Ohashi T; Clark RL; Erickson HP; Zauscher S
    Matrix Biol; 2006 Apr; 25(3):175-84. PubMed ID: 16343877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy.
    Bergkvist M; Carlsson J; Oscarsson S
    J Biomed Mater Res A; 2003 Feb; 64(2):349-56. PubMed ID: 12522822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.
    Mnatsakanyan H; Rico P; Grigoriou E; Candelas AM; Rodrigo-Navarro A; Salmeron-Sanchez M; Sabater i Serra R
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18125-35. PubMed ID: 26225535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Morphological observation on fibronectin fibrils surrounding human breast carcinoma cells by atomic force microscopy].
    Chen Y; Cai JY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Aug; 35(8):752-5. PubMed ID: 12897972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of integrin binding sites in fibronectin matrix assembly in vivo.
    Leiss M; Beckmann K; Girós A; Costell M; Fässler R
    Curr Opin Cell Biol; 2008 Oct; 20(5):502-7. PubMed ID: 18586094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between fibronectin, glycosaminoglycans and native collagen fibrils: an EM study in artificial three-dimensional extracellular matrices.
    Cidadão AJ
    Eur J Cell Biol; 1989 Apr; 48(2):303-12. PubMed ID: 2744004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-dependent fibrillogenesis of fibronectin: Impact of platelet integrins and actin cytoskeleton.
    Nguyen H; Huynh K; Stoldt VR
    Biochem Biophys Res Commun; 2018 Mar; 497(2):797-803. PubMed ID: 29470988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitronectin alters fibronectin organization at the cell-material interface.
    González-García C; Cantini M; Moratal D; Altankov G; Salmerón-Sánchez M
    Colloids Surf B Biointerfaces; 2013 Nov; 111():618-25. PubMed ID: 23899674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing fibronectin-surface interactions: a multitechnique approach.
    Velzenberger E; Pezron I; Legeay G; Nagel MD; El Kirat K
    Langmuir; 2008 Oct; 24(20):11734-42. PubMed ID: 18816077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Cryptic Binding Sites are Necessary for Robust Fibronectin Assembly: An In Silico Study.
    Lemmon CA; Weinberg SH
    Sci Rep; 2017 Dec; 7(1):18061. PubMed ID: 29273802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of fibronectin matrix assembly and capillary morphogenesis in endothelial cells by Rho family GTPases.
    Fernandez-Sauze S; Grall D; Cseh B; Van Obberghen-Schilling E
    Exp Cell Res; 2009 Jul; 315(12):2092-104. PubMed ID: 19332054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of material-driven fibronectin fibrillogenesis in cell differentiation.
    Salmerón-Sánchez M; Rico P; Moratal D; Lee TT; Schwarzbauer JE; García AJ
    Biomaterials; 2011 Mar; 32(8):2099-105. PubMed ID: 21185593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent labeling techniques for investigation of fibronectin fibrillogenesis (labeling fibronectin fibrillogenesis).
    Pankov R; Momchilova A
    Methods Mol Biol; 2009; 522():261-74. PubMed ID: 19247612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly.
    Sechler JL; Rao H; Cumiskey AM; Vega-Colón I; Smith MS; Murata T; Schwarzbauer JE
    J Cell Biol; 2001 Sep; 154(5):1081-8. PubMed ID: 11535624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.