BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17646988)

  • 1. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer.
    Bernhard H; Neudorfer J; Gebhard K; Conrad H; Hermann C; Nährig J; Fend F; Weber W; Busch DH; Peschel C
    Cancer Immunol Immunother; 2008 Feb; 57(2):271-80. PubMed ID: 17646988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes.
    Kuznetsova M; Lopatnikova J; Khantakova J; Maksyutov R; Maksyutov A; Sennikov S
    BMC Immunol; 2017 Jun; 18(1):31. PubMed ID: 28633645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The generation of both T killer and Th cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells.
    zum Büschenfelde CM; Metzger J; Hermann C; Nicklisch N; Peschel C; Bernhard H
    J Immunol; 2001 Aug; 167(3):1712-9. PubMed ID: 11466395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells.
    zum Büschenfelde CM; Hermann C; Schmidt B; Peschel C; Bernhard H
    Cancer Res; 2002 Apr; 62(8):2244-7. PubMed ID: 11956077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid of B and T lymphoblastic cell line could potentially substitute dendritic cells to efficiently expand out Her-2/neu-specific cytotoxic T lymphocytes from advanced breast cancer patients in vitro.
    Chen S; Gu F; Li K; Zhang K; Liu Y; Liang J; Gao W; Wu G; Liu L
    J Hematol Oncol; 2017 Feb; 10(1):63. PubMed ID: 28245833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells in combination with zoledronic acid inhibits cancer growth and limits osteolysis in a murine model of osteolytic breast cancer.
    Zysk A; DeNichilo MO; Panagopoulos V; Zinonos I; Liapis V; Hay S; Ingman W; Ponomarev V; Atkins G; Findlay D; Zannettino A; Evdokiou A
    Cancer Lett; 2017 Feb; 386():141-150. PubMed ID: 27865798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of adoptive immunotherapy with Herceptin for patients with HER2-expressing breast cancer.
    Kubo M; Morisaki T; Kuroki H; Tasaki A; Yamanaka N; Matsumoto K; Nakamura K; Onishi H; Baba E; Katano M
    Anticancer Res; 2003; 23(6a):4443-9. PubMed ID: 14666732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxic Activity and Memory T Cell Subset Distribution of
    Kuznetsova M; Lopatnikova J; Shevchenko J; Silkov A; Maksyutov A; Sennikov S
    Front Immunol; 2019; 10():1017. PubMed ID: 31143180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial.
    Domschke C; Ge Y; Bernhardt I; Schott S; Keim S; Juenger S; Bucur M; Mayer L; Blumenstein M; Rom J; Heil J; Sohn C; Schneeweiss A; Beckhove P; Schuetz F
    Cancer Immunol Immunother; 2013 Jun; 62(6):1053-60. PubMed ID: 23595207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice.
    Wang L; Xie Y; Ahmed KA; Ahmed S; Sami A; Chibbar R; Xu Q; Kane SE; Hao S; Mulligan SJ; Xiang J
    Breast Cancer Res Treat; 2013 Jul; 140(2):273-84. PubMed ID: 23881522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies.
    Szöőr Á; Tóth G; Zsebik B; Szabó V; Eshhar Z; Abken H; Vereb G
    Cancer Lett; 2020 Aug; 484():1-8. PubMed ID: 32289441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Specific cytotoxicity of a novel HER2-based chimeric antigen receptor modified T lymphocytes against HER2-positive tumor cells].
    Tang HJ; Liu YQ; Bian XC; Feng HL; Gu B; Sun H; Zuo CX; Zhou FY; Liu J
    Zhonghua Bing Li Xue Za Zhi; 2017 Oct; 46(10):714-720. PubMed ID: 29050075
    [No Abstract]   [Full Text] [Related]  

  • 13. Adoptive immuno-gene therapy of cancer with single chain antibody [scFv(Ig)] gene modified T lymphocytes.
    Lamers CH; Sleijfer S; Willemsen RA; Debets R; Kruit WH; Gratama JW; Stoter G
    J Biol Regul Homeost Agents; 2004; 18(2):134-40. PubMed ID: 15471217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors.
    Ahmed N; Salsman VS; Kew Y; Shaffer D; Powell S; Zhang YJ; Grossman RG; Heslop HE; Gottschalk S
    Clin Cancer Res; 2010 Jan; 16(2):474-85. PubMed ID: 20068073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribody [(HER2)
    Oberg HH; Kellner C; Gonnermann D; Sebens S; Bauerschlag D; Gramatzki M; Kabelitz D; Peipp M; Wesch D
    Front Immunol; 2018; 9():814. PubMed ID: 29725336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer.
    Yu F; Wang X; Shi H; Jiang M; Xu J; Sun M; Xu Q; Addai FP; Shi H; Gu J; Zhou Y; Liu L
    Tumori; 2021 Aug; 107(4):341-352. PubMed ID: 32988314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTLs directed against HER2 specifically cross-react with HER3 and HER4.
    Conrad H; Gebhard K; Krönig H; Neudorfer J; Busch DH; Peschel C; Bernhard H
    J Immunol; 2008 Jun; 180(12):8135-45. PubMed ID: 18523278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy.
    Lu D; Wang Y; Zhang T; Wang F; Li K; Zhou S; Zhu H; Yang Z; Liu Z
    J Nanobiotechnology; 2021 Jun; 19(1):175. PubMed ID: 34112200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is antigen specificity the key to efficient adoptive T-cell therapy?
    Labarriere N; Khammari A; Lang F; Dreno B
    Immunotherapy; 2011 Apr; 3(4):495-505. PubMed ID: 21463191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated T-cell and bispecific antibody immunotherapy for high-risk breast cancer. Bench to bedside.
    Lum LG; Sen M
    Acta Haematol; 2001; 105(3):130-6. PubMed ID: 11463985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.