BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17647202)

  • 1. The effect of soil type and plant age on the population size of rhizospheric methanotrophs and their activities in tropical rice soils.
    Vishwakarma P; Dubey SK
    J Basic Microbiol; 2007 Aug; 47(4):351-7. PubMed ID: 17647202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting pattern of methanotrophs in dry tropical forest soils: effect of soil nitrogen, carbon and moisture.
    Singh JS; Kashyap AK
    Microbiol Res; 2007; 162(3):276-83. PubMed ID: 16875809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of heavy metals on methane oxidation in tropical rice soils.
    Mohanty SR; Bharati K; Deepa N; Rao VR; Adhya TK
    Ecotoxicol Environ Saf; 2000 Nov; 47(3):277-84. PubMed ID: 11139181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and diversity of methanotrophs in the soil-water interface and rhizospheric soil from a flooded temperate rice field.
    Ferrando L; Tarlera S
    J Appl Microbiol; 2009 Jan; 106(1):306-16. PubMed ID: 19054233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.
    Shrestha M; Abraham WR; Shrestha PM; Noll M; Conrad R
    Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition.
    Mohanty SR; Nayak DR; Babu YJ; Adhya TK
    Microbiol Res; 2004; 159(3):193-201. PubMed ID: 15462519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil.
    Eller G; Krüger M; Frenzel P
    FEMS Microbiol Ecol; 2005 Jan; 51(2):279-91. PubMed ID: 16329876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ.
    Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R
    ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of salinity on methanogenesis and associated microflora in tropical rice soils.
    Pattnaik P; Mishra SR; Bharati K; Mohanty SR; Sethunathan N; Adhya TK
    Microbiol Res; 2000 Sep; 155(3):215-20. PubMed ID: 11061190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice roots select for type I methanotrophs in rice field soil.
    Wu L; Ma K; Lu Y
    Syst Appl Microbiol; 2009 Sep; 32(6):421-8. PubMed ID: 19481894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils.
    Kolb S; Knief C; Dunfield PF; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots.
    Bodelier PL; Roslev P; Henckel T; Frenzel P
    Nature; 2000 Jan; 403(6768):421-4. PubMed ID: 10667792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing.
    Noll M; Frenzel P; Conrad R
    FEMS Microbiol Ecol; 2008 Jul; 65(1):125-32. PubMed ID: 18544098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanotrophic production of extracellular polysaccharide in landfill cover soils.
    Chiemchaisri W; Wu JS; Visvanathan C
    Water Sci Technol; 2001; 43(6):151-8. PubMed ID: 11381961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of methanotrophs and methane oxidation on ammonium application in landfill soils.
    Yang N; Lü F; He P; Shao L
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1073-82. PubMed ID: 21670975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.
    Nayak DR; Babu YJ; Datta A; Adhya TK
    J Environ Qual; 2007; 36(6):1577-84. PubMed ID: 17940256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on composition of the methanotrophic community in rice field and forest soil.
    Mohanty SR; Bodelier PL; Conrad R
    FEMS Microbiol Ecol; 2007 Oct; 62(1):24-31. PubMed ID: 17725622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia.
    Liebner S; Wagner D
    Environ Microbiol; 2007 Jan; 9(1):107-17. PubMed ID: 17227416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeography of wetland rice methanotrophs.
    Lüke C; Krause S; Cavigiolo S; Greppi D; Lupotto E; Frenzel P
    Environ Microbiol; 2010 Apr; 12(4):862-72. PubMed ID: 20050875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere.
    Shrestha M; Shrestha PM; Frenzel P; Conrad R
    ISME J; 2010 Dec; 4(12):1545-56. PubMed ID: 20596069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.