These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 1764930)
21. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Valentín A; Humphrey JD Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3585-606. PubMed ID: 19657012 [TBL] [Abstract][Full Text] [Related]
22. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall. Roy S; Tsamis A; Prod'hom G; Stergiopulos N J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913 [TBL] [Abstract][Full Text] [Related]
23. Assessment of vascular smooth-muscle mechanisms using isolated segments of the vessel wall. Murphy RA Ann Biomed Eng; 1984; 12(5):451-62. PubMed ID: 6398635 [TBL] [Abstract][Full Text] [Related]
24. FE models of stress-strain states in vascular smooth muscle cell. Bursa J; Lebis R; Janicek P Technol Health Care; 2006; 14(4-5):311-20. PubMed ID: 17065753 [TBL] [Abstract][Full Text] [Related]
25. Regional Heterogeneity in the Regulation of Vasoconstriction in Arteries and Its Role in Vascular Mechanics. Murtada SI; Humphrey JD Adv Exp Med Biol; 2018; 1097():105-128. PubMed ID: 30315542 [TBL] [Abstract][Full Text] [Related]
29. Strain energy density function and uniform strain hypothesis for arterial mechanics. Takamizawa K; Hayashi K J Biomech; 1987; 20(1):7-17. PubMed ID: 3558431 [TBL] [Abstract][Full Text] [Related]
31. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. Zheng X; Ren J J Theor Biol; 2016 Mar; 393():118-26. PubMed ID: 26780646 [TBL] [Abstract][Full Text] [Related]
32. Tensegrity finite element models of mechanical tests of individual cells. Bursa J; Lebis R; Holata J Technol Health Care; 2012; 20(2):135-50. PubMed ID: 22508025 [TBL] [Abstract][Full Text] [Related]
33. [Effect of frequency of cyclic tensile strain on extracellular matrix of rat vascular smooth muscle cells in vitro]. Qu M; Liu B; Jiang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):826-30. PubMed ID: 18788289 [TBL] [Abstract][Full Text] [Related]
34. Chasing the wave. Unfashionable but important new concepts in arterial wave travel. Bleasdale RA; Parker KH; Jones CJ Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H1879-85. PubMed ID: 12742819 [No Abstract] [Full Text] [Related]
35. Biological modeling on a microcomputer using standard spreadsheet and equation solver programs: the hypothalamic-pituitary-ovarian axis as an example. Plouffe L; Luxenberg SN Comput Biomed Res; 1992 Apr; 25(2):117-30. PubMed ID: 1582189 [No Abstract] [Full Text] [Related]
36. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping. Fereidoonnezhad B; Naghdabadi R; Holzapfel GA J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103 [TBL] [Abstract][Full Text] [Related]
37. [The work of smooth muscles in the afferent coronary artery in comparison with other arteries of analogous dimensions]. Kozík J; Gerová M Cesk Fysiol; 1984; 33(4):370-3. PubMed ID: 6498980 [No Abstract] [Full Text] [Related]
38. A biomechanical model of artery buckling. Han HC J Biomech; 2007; 40(16):3672-8. PubMed ID: 17689541 [TBL] [Abstract][Full Text] [Related]