These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. [Molecular and structural-biological analysis of Nicotiana plumbaginifolia mutants for identification of the site of beta-tubulins interaction with dinitroanilines and phosphorotioamidates]. Emets AI; Baiard UV; Nyporko AIu; Swire-Clark GA; Blium IaB Tsitol Genet; 2009; 43(5):69-76. PubMed ID: 20458969 [TBL] [Abstract][Full Text] [Related]
7. Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Anthony RG; Waldin TR; Ray JA; Bright SW; Hussey PJ Nature; 1998 May; 393(6682):260-3. PubMed ID: 9607761 [TBL] [Abstract][Full Text] [Related]
8. Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant alpha-tubulin and a beta-tubulin. Anthony RG; Reichelt S; Hussey PJ Nat Biotechnol; 1999 Jul; 17(7):712-6. PubMed ID: 10404167 [TBL] [Abstract][Full Text] [Related]
10. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: tubulin as a specific antimalarial target. Fennell BJ; Naughton JA; Dempsey E; Bell A Mol Biochem Parasitol; 2006 Feb; 145(2):226-38. PubMed ID: 16406111 [TBL] [Abstract][Full Text] [Related]
11. Development of PPO inhibitor-resistant cultures and crops. Li X; Nicholl D Pest Manag Sci; 2005 Mar; 61(3):277-85. PubMed ID: 15660355 [TBL] [Abstract][Full Text] [Related]
12. Mutation of alpha-tubulin genes in trifluralin-resistant water foxtail (Alopecurus aequalis). Hashim S; Jan A; Sunohara Y; Hachinohe M; Ohdan H; Matsumoto H Pest Manag Sci; 2012 Mar; 68(3):422-9. PubMed ID: 21972152 [TBL] [Abstract][Full Text] [Related]
13. Methods to produce marker-free transgenic plants. Darbani B; Eimanifar A; Stewart CN; Camargo WN Biotechnol J; 2007 Jan; 2(1):83-90. PubMed ID: 17167767 [TBL] [Abstract][Full Text] [Related]
15. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Yu Q; Han H; Powles SB Pest Manag Sci; 2008 Dec; 64(12):1229-36. PubMed ID: 18636424 [TBL] [Abstract][Full Text] [Related]
16. Engineering the plant genome: prospects of selection systems using non-antibiotic marker genes. Penna S; Ganapathi TR GM Crops; 2010; 1(3):128-36. PubMed ID: 21865868 [TBL] [Abstract][Full Text] [Related]
17. A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition. Xie Z; Sundström JF; Jin Y; Liu C; Jansson C; Sun C Plant J; 2014 Mar; 77(6):954-61. PubMed ID: 24438514 [TBL] [Abstract][Full Text] [Related]
18. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Alvarez R; Alvarez JM; Humara JM; Revilla A; Ordás RJ Biotechnol Lett; 2009 Sep; 31(9):1477-83. PubMed ID: 19543858 [TBL] [Abstract][Full Text] [Related]
19. Production of herbicide-resistant sweet potato plants transformed with the bar gene. Yi G; Shin YM; Choe G; Shin B; Kim YS; Kim KM Biotechnol Lett; 2007 Apr; 29(4):669-75. PubMed ID: 17216299 [TBL] [Abstract][Full Text] [Related]
20. Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. Leyman B; Avonce N; Ramon M; Van Dijck P; Iturriaga G; Thevelein JM J Biotechnol; 2006 Feb; 121(3):309-17. PubMed ID: 16271790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]