BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17650367)

  • 1. In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope.
    Hattori Y; Komachi Y; Asakura T; Shimosegawa T; Kanai G; Tashiro H; Sato H
    Appl Spectrosc; 2007 Jun; 61(6):579-84. PubMed ID: 17650367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsurface Raman spectroscopy and mapping using a globally illuminated non-confocal fiber-optic array probe in the presence of Raman photon migration.
    Schulmerich MV; Finney WF; Fredricks RA; Morris MD
    Appl Spectrosc; 2006 Feb; 60(2):109-14. PubMed ID: 16542561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High axial resolution Raman probe made of a single hollow optical fiber.
    Katagiri T; Yamamoto YS; Ozaki Y; Matsuura Y; Sato H
    Appl Spectrosc; 2009 Jan; 63(1):103-7. PubMed ID: 19146726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-optical fiber probe for use in an intravascular Raman endoscope.
    Komachi Y; Sato H; Aizawa K; Tashiro H
    Appl Opt; 2005 Aug; 44(22):4722-32. PubMed ID: 16075885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy.
    Huang Z; Teh SK; Zheng W; Lin K; Ho KY; Teh M; Yeoh KG
    Biosens Bioelectron; 2010 Oct; 26(2):383-9. PubMed ID: 20729057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo.
    Mahadevan-Jansen A; Mitchell MF; Ramanujam N; Utzinger U; Richards-Kortum R
    Photochem Photobiol; 1998 Sep; 68(3):427-31. PubMed ID: 9747597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing.
    Dochow S; Latka I; Becker M; Spittel R; Kobelke J; Schuster K; Graf A; Brückner S; Unger S; Rothhardt M; Dietzek B; Krafft C; Popp J
    Opt Express; 2012 Aug; 20(18):20156-69. PubMed ID: 23037068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering.
    Hwang D; Yoon DJ; Kwon IB; Seo DC; Chung Y
    Opt Express; 2010 May; 18(10):9747-54. PubMed ID: 20588825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time in situ Raman analysis of microwave-assisted organic reactions.
    Pivonka DE; Empfield JR
    Appl Spectrosc; 2004 Jan; 58(1):41-6. PubMed ID: 14727719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy.
    Naito S; Min YK; Sugata K; Osanai O; Kitahara T; Hiruma H; Hamaguchi H
    Skin Res Technol; 2008 Feb; 14(1):18-25. PubMed ID: 18211598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region.
    Santos LF; Wolthuis R; Koljenović S; Almeida RM; Puppels GJ
    Anal Chem; 2005 Oct; 77(20):6747-52. PubMed ID: 16223266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep subsurface Raman spectroscopy of turbid media by a defocused collection system.
    Eliasson C; Claybourn M; Matousek P
    Appl Spectrosc; 2007 Oct; 61(10):1123-7. PubMed ID: 17958964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.
    Wang J; Lin K; Zheng W; Ho KY; Teh M; Yeoh KG; Huang Z
    Anal Bioanal Chem; 2015 Nov; 407(27):8303-10. PubMed ID: 25943262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Raman spectrograph throughput using two commercial systems: transmissive versus reflective.
    Lieber CA; Kanter EM; Mahadevan-Jansen A
    Appl Spectrosc; 2008 May; 62(5):575-82. PubMed ID: 18498700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman probes based on optically-poled double-clad fiber and coupler.
    Brunetti AC; Margulis W; Rottwitt K
    Opt Express; 2012 Dec; 20(27):28563-72. PubMed ID: 23263094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.
    Okagbare PI; Begun D; Tecklenburg M; Awonusi A; Goldstein SA; Morris MD
    J Biomed Opt; 2012 Sep; 17(9):90502-1. PubMed ID: 23085899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy.
    Wang J; Bergholt MS; Zheng W; Huang Z
    Opt Lett; 2013 Jul; 38(13):2321-3. PubMed ID: 23811915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy.
    Huang Z; Teh SK; Zheng W; Mo J; Lin K; Shao X; Ho KY; Teh M; Yeoh KG
    Opt Lett; 2009 Mar; 34(6):758-60. PubMed ID: 19282923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe.
    Koljenović S; Schut TC; Wolthuis R; Vincent AJ; Hendriks-Hagevi G; Santos L; Kros JM; Puppels GJ
    Anal Chem; 2007 Jan; 79(2):557-64. PubMed ID: 17222020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiberoptic resonance Raman spectroscopy to measure carotenoid oxidative breakdown in live tissues.
    Bentz BG; Diaz J; Ring TA; Wade M; Kennington K; Burnett DM; McClane R; Fitzpatrick FA
    Cancer Prev Res (Phila); 2010 Apr; 3(4):529-38. PubMed ID: 20354162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.