These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 17650374)

  • 1. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment.
    Sharma SK; Misra AK; Sharma B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2404-12. PubMed ID: 16029864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse.
    Misra AK; Sharma SK; Lucey PG
    Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.
    Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG
    Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.
    Grönlund R; Lundqvist M; Svanberg S
    Appl Spectrosc; 2006 Aug; 60(8):853-9. PubMed ID: 16925920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed remote Raman system for daytime measurements of mineral spectra.
    Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Stokes Raman spectrometry with 1064-nm excitation: an effective instrumental approach for field detection of explosives.
    Lewis ML; Lewis IR; Griffiths PR
    Appl Spectrosc; 2004 Apr; 58(4):420-7. PubMed ID: 17140491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence lidar multicolor imaging of vegetation.
    Edner H; Johansson J; Svanberg S; Wallinder E
    Appl Opt; 1994 May; 33(13):2471-9. PubMed ID: 20885598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-off Raman detection using dispersive and tunable filter based systems.
    Carter JC; Scaffidi J; Burnett S; Vasser B; Sharma SK; Angel SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2288-98. PubMed ID: 15967708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on the nonlinear Raman lidar monitoring the CO2 gas].
    Zhao YF; Zhang YC; Hong GL; Liu XQ; Cao KF; Fang X; Tao ZM; Yu SH; Qu KF; Shao SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):794-7. PubMed ID: 16883838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust.
    Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short pulse laser train for laser plasma interaction experiments.
    Kline JL; Shimada T; Johnson RP; Montgomery DS; Hegelich BM; Esquibel DM; Flippo KA; Gonzales RP; Hurry TR; Reid SL
    Rev Sci Instrum; 2007 Aug; 78(8):083501. PubMed ID: 17764320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-wavelength Raman spectroscopy approach for studying fluid-phase equilibria using a single laser.
    Kiefer J
    Appl Spectrosc; 2010 Jun; 64(6):687-9. PubMed ID: 20537237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.
    Zachhuber B; Gasser C; Ramer G; Chrysostom Et; Lendl B
    Appl Spectrosc; 2012 Aug; 66(8):875-81. PubMed ID: 22800681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform.
    Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ
    Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.