BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17650511)

  • 1. Seed development in Ipomoea lacunosa (Convolvulaceae), with particular reference to anatomy of the water gap.
    Gehan Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2007 Sep; 100(3):459-70. PubMed ID: 17650511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and anatomy of physical dormancy in Ipomoea lacunosa: identification of the water gap in seeds of Convolvulaceae (Solanales).
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2007 Jul; 100(1):13-22. PubMed ID: 17513869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of physical dormancy and ontogeny of the micropyle--water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae).
    Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2011 Jul; 108(1):51-64. PubMed ID: 21546433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling.
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC; Chien CT
    Ann Bot; 2008 Jul; 102(1):39-48. PubMed ID: 18453546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of seed dormancy in Convolvulaceae, subfamily Convolvuloideae (Solanales).
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2009 Jan; 103(1):45-63. PubMed ID: 19074450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa (Convolvulaceae).
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2009 Feb; 103(3):433-45. PubMed ID: 19098068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycling of sensitivity to physical dormancy-break in seeds of Ipomoea lacunosa (Convolvulaceae) and ecological significance.
    Jayasuriya KM; Baskin JM; Baskin CC
    Ann Bot; 2008 Feb; 101(3):341-52. PubMed ID: 18032427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae).
    Orozco-Segovia A; Márquez-Guzmán J; Sánchez-Coronado ME; Gamboa de Buen A; Baskin JM; Baskin CC
    Ann Bot; 2007 Apr; 99(4):581-92. PubMed ID: 17298989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes.
    Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2013 Jul; 112(1):69-84. PubMed ID: 23649182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of the water gap in physically dormant seeds of Geraniaceae, with special reference to Geranium carolinianum.
    Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2010 Jun; 105(6):977-90. PubMed ID: 20400757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary reversal of physical dormancy to nondormancy: evidence from comparative seed morphoanatomy of
    Gunadasa DMNH; Jayasuriya KMGG; Baskin JM; Baskin CC
    AoB Plants; 2024 Jun; 16(3):plae033. PubMed ID: 38872897
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus adsurgens.
    Jaganathan GK; Li J; Biddick M; Han K; Song D; Yang Y; Han Y; Liu B
    Sci Rep; 2019 Jul; 9(1):9695. PubMed ID: 31273277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations into seed dormancy in Grevillea linearifolia, G. buxifolia and G. sericea: anatomy and histochemistry of the seed coat.
    Briggs CL; Morris EC; Ashford AE
    Ann Bot; 2005 Nov; 96(6):965-80. PubMed ID: 16157632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of the water gap in the physically dormant seeds of Dodonaea petiolaris: a first report for Sapindaceae.
    Turner SR; Cook A; Baskin JM; Baskin CC; Tuckett RE; Steadman KJ; Dixon KW
    Ann Bot; 2009 Oct; 104(5):833-44. PubMed ID: 19620135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paths of water entry and structures involved in the breaking of seed dormancy of Lupinus.
    Robles-Díaz E; Flores J; Yáñez-Espinosa L
    J Plant Physiol; 2016 Mar; 192():75-80. PubMed ID: 26874334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum.
    Hay FR; Smith RD; Ellis RH; Butler LH
    Ann Bot; 2010 Jun; 105(6):1035-52. PubMed ID: 20228084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why large seeds with physical dormancy become nondormant earlier than small ones.
    Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS
    PLoS One; 2018; 13(8):e0202038. PubMed ID: 30092026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A function for the pleurogram in physically dormant seeds.
    Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS
    Ann Bot; 2019 May; 123(5):867-876. PubMed ID: 30596817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymbiotic germination of Vanilla planifolia in relation to the timing of seed collection and seed pretreatments.
    Yeh CH; Chen KY; Lee YI
    Bot Stud; 2021 May; 62(1):6. PubMed ID: 33939032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seed development in Paeonia ostii (Paeoniaceae), with particular reference to embryogeny.
    Zhang K; Cao W; Baskin JM; Baskin CC; Sun J; Yao L; Tao J
    BMC Plant Biol; 2021 Dec; 21(1):603. PubMed ID: 34922450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.