These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
535 related articles for article (PubMed ID: 17651216)
1. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
2. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
3. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
4. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
5. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
6. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838 [TBL] [Abstract][Full Text] [Related]
7. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [TBL] [Abstract][Full Text] [Related]
8. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
9. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
10. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257 [TBL] [Abstract][Full Text] [Related]
11. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
12. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Watanabe S; Kodaki T; Makino K J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532 [TBL] [Abstract][Full Text] [Related]
14. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol. Zhang J; Yang M; Tian S; Zhang Y; Yang X Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171 [TBL] [Abstract][Full Text] [Related]
15. [Metabolic engineering for improving ethanol fermentation of xylose by wild yeast]. Zhang L; Zhang L; Ding Z; Wang Z; Shi G Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):950-6. PubMed ID: 18807975 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
17. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]
18. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. Guo C; Jiang N World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545 [TBL] [Abstract][Full Text] [Related]
19. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
20. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M; Rådström P; Hahn-Hägerdal B Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]