BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 17651216)

  • 21. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation.
    Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol.
    Zhang J; Tian S; Zhang Y; Yang X
    Appl Biochem Biotechnol; 2008 Aug; 150(2):185-92. PubMed ID: 18415054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Jin YS; Jeffries TW
    Appl Biochem Biotechnol; 2003; 105 -108():277-86. PubMed ID: 12721451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.
    Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ
    Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A; Sawayama S
    J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production.
    Zhang X; Shen Y; Shi W; Bao X
    Bioresour Technol; 2010 Sep; 101(18):7104-10. PubMed ID: 20456950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.
    Zha J; Shen M; Hu M; Song H; Yuan Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis.
    Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC
    Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic and Transcriptional Analysis of Recombinant Saccharomyces Cerevisiae for Xylose Fermentation: A Feasible and Efficient Approach.
    Shi XC; Zhang Y; Wang T; Wang XC; Lv HB; Laborda P; Duan TT
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2425-2434. PubMed ID: 34077376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endogenous xylose pathway in Saccharomyces cerevisiae.
    Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M
    Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.