These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1765160)

  • 1. Molecular mechanisms for mammalian melanogenesis. Comparison with insect cuticular sclerotization.
    Sugumaran M
    FEBS Lett; 1991 Dec; 295(1-3):233-9. PubMed ID: 1765160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,2-dehydro-N-beta-alanyldopamine as a new intermediate in insect cuticular sclerotization.
    Ricketts D; Sugumaran M
    J Biol Chem; 1994 Sep; 269(35):22217-21. PubMed ID: 8071347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization.
    Sugumaran M; Schinkmann K; Dali H
    Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals.
    Sugumaran M; Barek H
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27775611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.
    Sugumaran M; Semensi V; Kalyanaraman B; Bruce JM; Land EJ
    J Biol Chem; 1992 May; 267(15):10355-61. PubMed ID: 1316899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and toxicological consequences of quinone methide formation.
    Thompson DC; Thompson JA; Sugumaran M; Moldéus P
    Chem Biol Interact; 1993 Feb; 86(2):129-62. PubMed ID: 8448810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanization in living organisms: a perspective of species evolution.
    Vavricka CJ; Christensen BM; Li J
    Protein Cell; 2010 Sep; 1(9):830-41. PubMed ID: 21203925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model sclerotization studies. 3. Cuticular enzyme catalyzed oxidation of peptidyl model tyrosine and dopa derivatives.
    Sugumaran M; Ricketts D
    Arch Insect Biochem Physiol; 1995; 28(1):17-32. PubMed ID: 7803812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-evaluation of insect melanogenesis research: Views from the dark side.
    Whitten MMA; Coates CJ
    Pigment Cell Melanoma Res; 2017 Jul; 30(4):386-401. PubMed ID: 28378380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase.
    Sugumaran M; Nellaiappan K; Valivittan K
    Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide.
    Saul SJ; Sugumaran M
    Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. o-quinone/quinone methide isomerase: a novel enzyme preventing the destruction of self-matter by phenoloxidase-generated quinones during immune response in insects.
    Saul SJ; Sugumaran M
    FEBS Lett; 1989 Jun; 249(2):155-8. PubMed ID: 2500362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinone and quinone methide as transient intermediates involved in the side chain hydroxylation of N-acyldopamine derivatives by soluble enzymes from Manduca sexta cuticle.
    Saul SJ; Dali H; Sugumaran M
    Arch Insect Biochem Physiol; 1991; 16(2):123-38. PubMed ID: 1799673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping of transiently formed quinone methide during enzymatic conversion of N-acetyldopamine to N-acetylnorepinephrine.
    Sugumaran M; Saul S; Semensi V
    FEBS Lett; 1989 Jul; 252(1-2):135-8. PubMed ID: 2503395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine.
    Abebe A; Zheng D; Evans J; Sugumaran M
    Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel quinone: quinone methide isomerase generates quinone methides in insect cuticle.
    Saul S; Sugumaran M
    FEBS Lett; 1988 Sep; 237(1-2):155-8. PubMed ID: 3169236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata.
    Sugumaran M; Saul SJ; Dali H
    Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone.
    Sugumaran M
    Arch Biochem Biophys; 2000 Jun; 378(2):404-10. PubMed ID: 10860558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.