These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17652407)

  • 21. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P.
    Hsieh J; Koutmou KS; Rueda D; Koutmos M; Walter NG; Fierke CA
    J Mol Biol; 2010 Jul; 400(1):38-51. PubMed ID: 20434461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a polynuclear metal ion binding site in the catalytic domain of ribonuclease P RNA.
    Christian EL; Kaye NM; Harris ME
    EMBO J; 2002 May; 21(9):2253-62. PubMed ID: 11980722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA.
    Harris ME; Pace NR
    RNA; 1995 Apr; 1(2):210-8. PubMed ID: 7585250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction.
    Shan S; Kravchuk AV; Piccirilli JA; Herschlag D
    Biochemistry; 2001 May; 40(17):5161-71. PubMed ID: 11318638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The P15-loop of Escherichia coli RNase P RNA is an autonomous divalent metal ion binding domain.
    Kufel J; Kirsebom LA
    RNA; 1998 Jul; 4(7):777-88. PubMed ID: 9671051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The naturally trans-acting ribozyme RNase P RNA has leadzyme properties.
    Kikovska E; Mikkelsen NE; Kirsebom LA
    Nucleic Acids Res; 2005; 33(21):6920-30. PubMed ID: 16332695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual metal ion catalysis in an acyl-transferase ribozyme.
    Suga H; Cowan JA; Szostak JW
    Biochemistry; 1998 Jul; 37(28):10118-25. PubMed ID: 9665717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes.
    Pfeiffer T; Tekos A; Warnecke JM; Drainas D; Engelke DR; Séraphin B; Hartmann RK
    J Mol Biol; 2000 May; 298(4):559-65. PubMed ID: 10788319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalysis by RNase P RNA: unique features and unprecedented active site plasticity.
    Persson T; Cuzic S; Hartmann RK
    J Biol Chem; 2003 Oct; 278(44):43394-401. PubMed ID: 12904300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate shape preference of Escherichia coli ribonuclease P ribozyme and holo enzyme using bottom-half part-shifting variants of pre-tRNA.
    Tanaka T; Nagai Y; Kikuchi Y
    Biosci Biotechnol Biochem; 2005 Oct; 69(10):1992-4. PubMed ID: 16244456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional identification of catalytic metal ion binding sites within RNA.
    Hougland JL; Kravchuk AV; Herschlag D; Piccirilli JA
    PLoS Biol; 2005 Sep; 3(9):e277. PubMed ID: 16092891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR spectroscopic evidence for Mn(2+)(Mg(2+)) binding to a precursor-tRNA microhelix near the potential RNase P cleavage site.
    Zuleeg T; Hartmann RK; Kreutzer R; Limmer S
    J Mol Biol; 2001 Jan; 305(2):181-9. PubMed ID: 11124898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis.
    Sharin E; Schein A; Mann H; Ben-Asouli Y; Jarrous N
    Nucleic Acids Res; 2005; 33(16):5120-32. PubMed ID: 16155184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site.
    Loria A; Pan T
    Biochemistry; 1999 Jul; 38(27):8612-20. PubMed ID: 10393536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal ion cooperativity in ribozyme cleavage of RNA.
    Brännvall M; Kirsebom LA
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12943-7. PubMed ID: 11606743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis.
    Smith D; Burgin AB; Haas ES; Pace NR
    J Biol Chem; 1992 Feb; 267(4):2429-36. PubMed ID: 1370819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects.
    Gruegelsiepe H; Willkomm DK; Goudinakis O; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1049-56. PubMed ID: 14523923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.