BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 17652422)

  • 1. Estimating receptive fields of simple and complex cells in early visual cortex: A convolutional neural network model with parameterized rectification.
    Nguyen P; Sooriyaarachchi J; Huang Q; Baker CL
    PLoS Comput Biol; 2024 May; 20(5):e1012127. PubMed ID: 38820562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel processing of visual space by neighboring neurons in mouse visual cortex.
    Smith SL; Häusser M
    Nat Neurosci; 2010 Sep; 13(9):1144-9. PubMed ID: 20711183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Republication of The Journal of Physiology (1959) 148, 574-591: Receptive fields of single neurones in the cat's striate cortex. 1959.
    Hubel DH; Wiesel TN
    J Physiol; 2009 Jun; 587(Pt 12):2721-32. PubMed ID: 19525558
    [No Abstract]   [Full Text] [Related]  

  • 4. Are v1 simple cells optimized for visual occlusions? A comparative study.
    Bornschein J; Henniges M; Lücke J
    PLoS Comput Biol; 2013; 9(6):e1003062. PubMed ID: 23754938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information maximization principle explains the emergence of complex cell-like neurons.
    Tanaka T; Nakamura K
    Front Comput Neurosci; 2013; 7():165. PubMed ID: 24319424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The divisive normalization model of V1 neurons: a comprehensive comparison of physiological data and model predictions.
    Sawada T; Petrov AA
    J Neurophysiol; 2017 Dec; 118(6):3051-3091. PubMed ID: 28835531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex.
    Kato D; Baba M; Sasaki KS; Ohzawa I
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1697):. PubMed ID: 27269609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.
    Sasaki KS; Kimura R; Ninomiya T; Tabuchi Y; Tanaka H; Fukui M; Asada YC; Arai T; Inagaki M; Nakazono T; Baba M; Kato D; Nishimoto S; Sanada TM; Tani T; Imamura K; Tanaka S; Ohzawa I
    Sci Rep; 2015 Nov; 5():16712. PubMed ID: 26567927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Convolutional Subunit Model for Neuronal Responses in Macaque V1.
    Vintch B; Movshon JA; Simoncelli EP
    J Neurosci; 2015 Nov; 35(44):14829-41. PubMed ID: 26538653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex.
    Baba M; Sasaki KS; Ohzawa I
    J Neurosci; 2015 Jul; 35(27):10025-38. PubMed ID: 26157002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation selectivity in cat primary visual cortex: local and global measurement.
    Xu T; Yan HM; Song XM; Li M
    Neurosci Bull; 2015 Oct; 31(5):561-71. PubMed ID: 26089234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow feature analysis on retinal waves leads to V1 complex cells.
    Dähne S; Wilbert N; Wiskott L
    PLoS Comput Biol; 2014 May; 10(5):e1003564. PubMed ID: 24810948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.
    Siddiqui MS; Bhaumik B
    PLoS One; 2011; 6(10):e24997. PubMed ID: 22022370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex cells in the cat striate cortex have multiple disparity detectors in the three-dimensional binocular receptive fields.
    Sasaki KS; Tabuchi Y; Ohzawa I
    J Neurosci; 2010 Oct; 30(41):13826-37. PubMed ID: 20943923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subpopulations of neurons in visual area v2 perform differentiation and integration operations in space and time.
    Schmid AM; Purpura KP; Ohiorhenuan IE; Mechler F; Victor JD
    Front Syst Neurosci; 2009; 3():15. PubMed ID: 19915726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal features of synaptic to discharge receptive field transformation in cat area 17.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    J Neurophysiol; 2010 Feb; 103(2):677-97. PubMed ID: 19906874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal spatial organization of receptive fields of complex cells in the early visual cortex.
    Sasaki KS; Ohzawa I
    J Neurophysiol; 2007 Sep; 98(3):1194-212. PubMed ID: 17652422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive fields of disparity-selective neurons in macaque striate cortex.
    Livingstone MS; Tsao DY
    Nat Neurosci; 1999 Sep; 2(9):825-32. PubMed ID: 10461222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haphazard wiring of simple receptive fields and orientation columns in visual cortex.
    Ringach DL
    J Neurophysiol; 2004 Jul; 92(1):468-76. PubMed ID: 14999045
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.