BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 17652425)

  • 1. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.
    Nakatani Y; Takeda H; Kohara Y; Morishita S
    Genome Res; 2007 Sep; 17(9):1254-65. PubMed ID: 17652425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two rounds of whole genome duplication in the ancestral vertebrate.
    Dehal P; Boore JL
    PLoS Biol; 2005 Oct; 3(10):e314. PubMed ID: 16128622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution.
    Horton AC; Mahadevan NR; Ruvinsky I; Gibson-Brown JJ
    J Exp Zool B Mol Dev Evol; 2003 Oct; 299(1):41-53. PubMed ID: 14508816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD).
    Meyer A; Van de Peer Y
    Bioessays; 2005 Sep; 27(9):937-45. PubMed ID: 16108068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The medaka draft genome and insights into vertebrate genome evolution.
    Kasahara M; Naruse K; Sasaki S; Nakatani Y; Qu W; Ahsan B; Yamada T; Nagayasu Y; Doi K; Kasai Y; Jindo T; Kobayashi D; Shimada A; Toyoda A; Kuroki Y; Fujiyama A; Sasaki T; Shimizu A; Asakawa S; Shimizu N; Hashimoto S; Yang J; Lee Y; Matsushima K; Sugano S; Sakaizumi M; Narita T; Ohishi K; Haga S; Ohta F; Nomoto H; Nogata K; Morishita T; Endo T; Shin-I T; Takeda H; Morishita S; Kohara Y
    Nature; 2007 Jun; 447(7145):714-9. PubMed ID: 17554307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference.
    Robinson-Rechavi M; Boussau B; Laudet V
    Mol Biol Evol; 2004 Mar; 21(3):580-6. PubMed ID: 14694077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic phylogenomic evidence of en bloc duplication of the ancestral 8p11.21-8p21.3-like region.
    Vienne A; Rasmussen J; Abi-Rached L; Pontarotti P; Gilles A
    Mol Biol Evol; 2003 Aug; 20(8):1290-8. PubMed ID: 12777526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of somatostatin in vertebrates.
    Liu Y; Lu D; Zhang Y; Li S; Liu X; Lin H
    Gene; 2010 Sep; 463(1-2):21-8. PubMed ID: 20472043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates.
    Go Y;
    Mol Biol Evol; 2006 May; 23(5):964-72. PubMed ID: 16484289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of neuroendocrine peptides.
    Conlon JM; Larhammar D
    Gen Comp Endocrinol; 2005 May; 142(1-2):53-9. PubMed ID: 15862548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebrate beta-thymosins: conserved synteny reveals the relationship between those of bony fish and of land vertebrates.
    Edwards J
    FEBS Lett; 2010 Mar; 584(5):1047-53. PubMed ID: 20138884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after?
    Kuraku S; Meyer A; Kuratani S
    Mol Biol Evol; 2009 Jan; 26(1):47-59. PubMed ID: 18842688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes.
    Sundström G; Larsson TA; Brenner S; Venkatesh B; Larhammar D
    Gen Comp Endocrinol; 2008 Feb; 155(3):705-16. PubMed ID: 17950734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearrangement rate following the whole-genome duplication in teleosts.
    Sémon M; Wolfe KH
    Mol Biol Evol; 2007 Mar; 24(3):860-7. PubMed ID: 17218642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype.
    Kohn M; Högel J; Vogel W; Minich P; Kehrer-Sawatzki H; Graves JA; Hameister H
    Trends Genet; 2006 Apr; 22(4):203-10. PubMed ID: 16517001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.