BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17652432)

  • 1. Cell-matrix interactions modulate transepithelial phosphate transport in P(i)-deprived OK cells.
    Barac-Nieto M; Weinman EJ; Spitzer A
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1272-7. PubMed ID: 17652432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial phosphate transport in rabbit proximal tubular cells adapted to phosphate deprivation.
    Scheinman SJ; Reid R; Coulson R; Jones DB; Ford SM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1609-18. PubMed ID: 8023892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: phosphate transport.
    Reshkin SJ; Forgo J; Murer H
    Pflugers Arch; 1990 Jul; 416(5):554-60. PubMed ID: 2172918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral LAT-2 has a major role in the transepithelial flux of L-cystine in the renal proximal tubule cell line OK.
    Fernández E; Torrents D; Chillarón J; Martín Del Río R; Zorzano A; Palacín M
    J Am Soc Nephrol; 2003 Apr; 14(4):837-47. PubMed ID: 12660317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The paracellular permeability of opossum kidney cells, a proximal tubule cell line.
    Liang M; Ramsey CR; Knox FG
    Kidney Int; 1999 Dec; 56(6):2304-8. PubMed ID: 10594810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transepithelial fluxes of adenosine and 2'-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3.
    Elwi AN; Damaraju VL; Kuzma ML; Mowles DA; Baldwin SA; Young JD; Sawyer MB; Cass CE
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1439-51. PubMed ID: 19297449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of a transcellular oxalate transport mechanism in LLC-PK1 and MDCK cells cultured on porous supports.
    Verkoelen CF; Romijn JC; de Bruijn WC; Boevé ER; Cao LC; Schröder FH
    Scanning Microsc; 1993 Sep; 7(3):1031-8; discussion 1038-40. PubMed ID: 8146604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aflatoxin B1 reduces Na(+)-P(i) co-transport in proximal renal epithelium: studies in opossum kidney (OK) cells.
    Glahn RP; Van Campen D; Dousa TP
    Toxicology; 1994 Sep; 92(1-3):91-100. PubMed ID: 7940571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of organic anion in the OK kidney epithelial cell line.
    Hori R; Okamura M; Takayama A; Hirozane K; Takano M
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F975-80. PubMed ID: 8322901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of calcium transport and regulation in the proximal tubule.
    Edwards A; Bonny O
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F942-F953. PubMed ID: 29846115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional asymmetry in phosphate transport and its regulation in opossum kidney cells: parathyroid hormone inhibition.
    Reshkin SJ; Forgo J; Murer H
    Pflugers Arch; 1990 Aug; 416(6):624-31. PubMed ID: 2247335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent L-DOPA transport in renal OK cells.
    Silva E; Gomes P; Soares-da-Silva P
    Life Sci; 2006 Jul; 79(8):723-9. PubMed ID: 16600308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate deprivation inhibits NH4+ transport in OK cells.
    Chen JG; Kempson SA
    Biochim Biophys Acta; 1993 Jul; 1149(2):299-304. PubMed ID: 8323948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the basolateral and apical step of transepithelial organic anion secretion in proximal tubular opossum kidney cells. Acute effects of epidermal growth factor and mitogen-activated protein kinase.
    Sauvant C; Holzinger H; Gekle M
    J Biol Chem; 2001 May; 276(18):14695-703. PubMed ID: 11278330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of proximal tubular transport functions in the established kidney cell line, OK.
    Malström K; Stange G; Murer H
    Biochim Biophys Acta; 1987 Aug; 902(2):269-77. PubMed ID: 3620461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss).
    Wood CM; Gilmour KM; Pärt P
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):87-96. PubMed ID: 11253822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-visible intracellular P(i) and phosphoesters during regulation of Na(+)-P(i) cotransport in opossum kidney cells.
    Barac-Nieto M; Spitzer A
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C915-9. PubMed ID: 7943285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular mechanisms involved in the acute adaptation of OK cell Na/Pi-cotransport to high- or low-Pi medium.
    Pfister MF; Hilfiker H; Forgo J; Lederer E; Biber J; Murer H
    Pflugers Arch; 1998 Apr; 435(5):713-9. PubMed ID: 9479025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.