BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 17652820)

  • 1. New iron chelators in anthracycline-induced cardiotoxicity.
    Kaiserová H; Simunek T; Sterba M; den Hartog GJ; Schröterová L; Popelová O; Gersl V; Kvasnicková E; Bast A
    Cardiovasc Toxicol; 2007; 7(2):145-50. PubMed ID: 17652820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection by flavonoids against anthracycline cardiotoxicity: from chemistry to clinical trials.
    Bast A; Haenen GR; Bruynzeel AM; Van der Vijgh WJ
    Cardiovasc Toxicol; 2007; 7(2):154-9. PubMed ID: 17652822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardioprotective effects of a novel iron chelator, pyridoxal 2-chlorobenzoyl hydrazone, in the rabbit model of daunorubicin-induced cardiotoxicity.
    Sterba M; Popelová O; Simunek T; Mazurová Y; Potácová A; Adamcová M; Kaiserová H; Ponka P; Gersl V
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1336-47. PubMed ID: 17003229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridoxal isonicotinoyl hydrazone (PIH) and its analogs as protectants against anthracycline-induced cardiotoxicity.
    Simunek T; Sterba M; Popelova O; Kaiserova H; Potacova A; Adamcova M; Mazurova Y; Ponka P; Gersl V
    Hemoglobin; 2008; 32(1-2):207-15. PubMed ID: 18274998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant defense against anthracycline cardiotoxicity by metallothionein.
    Kang YJ
    Cardiovasc Toxicol; 2007; 7(2):95-100. PubMed ID: 17652812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH).
    Sterba M; Popelová O; Simůnek T; Mazurová Y; Potácová A; Adamcová M; Guncová I; Kaiserová H; Palicka V; Ponka P; Gersl V
    Toxicology; 2007 Jun; 235(3):150-66. PubMed ID: 17459556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin.
    Kaiserová H; den Hartog GJ; Simůnek T; Schröterová L; Kvasnicková E; Bast A
    Br J Pharmacol; 2006 Dec; 149(7):920-30. PubMed ID: 17031387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction to the metabolic determinants of anthracycline cardiotoxicity.
    Menna P; Recalcati S; Cairo G; Minotti G
    Cardiovasc Toxicol; 2007; 7(2):80-5. PubMed ID: 17652809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotyping the risk of anthracycline-induced cardiotoxicity.
    Deng S; Wojnowski L
    Cardiovasc Toxicol; 2007; 7(2):129-34. PubMed ID: 17652817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of chronic anthracycline cardiotoxicity in the adult Fischer 344 rat by dexrazoxane and effects on iron metabolism.
    Cusack BJ; Gambliel H; Musser B; Hadjokas N; Shadle SE; Charlier H; Olson RD
    Cancer Chemother Pharmacol; 2006 Oct; 58(4):517-26. PubMed ID: 16555089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking.
    Xu X; Sutak R; Richardson DR
    Mol Pharmacol; 2008 Mar; 73(3):833-44. PubMed ID: 18029550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors.
    Robert J
    Cardiovasc Toxicol; 2007; 7(2):135-9. PubMed ID: 17652818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of anthracycline cardiotoxicity by iron chelation.
    Hershko C; Pinson A; Link G
    Acta Haematol; 1996; 95(1):87-92. PubMed ID: 8604592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel antioxidants in anthracycline cardiotoxicity.
    Hideg K; Kálai T
    Cardiovasc Toxicol; 2007; 7(2):160-4. PubMed ID: 17652823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of iron and iron chelators in anthracycline cardiotoxicity.
    Hershko C; Link G; Tzahor M; Pinson A
    Leuk Lymphoma; 1993 Oct; 11(3-4):207-14. PubMed ID: 8260895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular pharmacology of the interaction of anthracyclines with iron.
    Xu X; Persson HL; Richardson DR
    Mol Pharmacol; 2005 Aug; 68(2):261-71. PubMed ID: 15883202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Procyanidins produce significant attenuation of doxorubicin-induced cardiotoxicity via suppression of oxidative stress.
    Li W; Xu B; Xu J; Wu XL
    Basic Clin Pharmacol Toxicol; 2009 Mar; 104(3):192-7. PubMed ID: 19143757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings?
    Lenčová-Popelová O; Jansová H; Jirkovský E; Bureš J; Jirkovská-Vávrová A; Mazurová Y; Reimerová P; Vostatková L; Adamcová M; Hroch M; Pokorná Z; Kovaříková P; Šimůnek T; Štěrba M
    Toxicology; 2016 Nov; 372():52-63. PubMed ID: 27816693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human heart cytosolic reductases and anthracycline cardiotoxicity.
    Mordente A; Meucci E; Martorana GE; Giardina B; Minotti G
    IUBMB Life; 2001 Jul; 52(1-2):83-8. PubMed ID: 11795600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron.
    Simůnek T; Stérba M; Popelová O; Adamcová M; Hrdina R; Gersl V
    Pharmacol Rep; 2009; 61(1):154-71. PubMed ID: 19307704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.