BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17653579)

  • 1. Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation.
    Shen PH; Wu B
    J Ind Microbiol Biotechnol; 2007 Oct; 34(10):657-63. PubMed ID: 17653579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200.
    Shen P; Chao H; Jiang C; Long Z; Wang C; Wu B
    Appl Biochem Biotechnol; 2010 Mar; 160(3):740-50. PubMed ID: 19266321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances L-serine production.
    Chao H; Wu B; Shen P
    Lett Appl Microbiol; 2015 Oct; 61(4):390-6. PubMed ID: 26189558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, mutagenesis, and physiological effect of a hydroxypyruvate reductase gene from Methylobacterium extorquens AM1.
    Chistoserdova LV; Lidstrom ME
    J Bacteriol; 1992 Jan; 174(1):71-7. PubMed ID: 1729225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of gene gnd encoding 6-phosphogluconate dehydrogenase promotes L-serine biosynthesis in a genetically engineered strain of Methylobacterium sp. MB200.
    Li X; Wu B; Zhou K; Jiang C; Shen P
    Biotechnol Lett; 2019 Jan; 41(1):69-77. PubMed ID: 30361889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice.
    Yu L; Jiang J; Zhang C; Jiang L; Ye N; Lu Y; Yang G; Liu E; Peng C; He Z; Peng X
    J Exp Bot; 2010 Jun; 61(6):1625-34. PubMed ID: 20194922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dichloromethane metabolism and C1 utilization genes in Methylobacterium strains.
    Kayser MF; Ucurum Z; Vuilleumier S
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1915-1922. PubMed ID: 12055310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical Properties and Phylogeny of Hydroxypyruvate Reductases from Methanotrophic Bacteria with Different C
    But SY; Egorova SV; Khmelenina VN; Trotsenko YA
    Biochemistry (Mosc); 2017 Nov; 82(11):1295-1303. PubMed ID: 29223156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a cypermethrin-degrading Methylobacterium sp. strain A-1 and molecular cloning of its carboxylesterase gene.
    Diegelmann C; Weber J; Heinzel-Wieland R; Kemme M
    J Basic Microbiol; 2015 Nov; 55(11):1245-54. PubMed ID: 26131623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunological characterization of serine-glyoxylate aminotransferase and hydroxypyruvate reductase from a methylotrophic bacterium, Hyphomicrobium methylovorum GM2.
    Hagishita T; Yoshida T; Izumi Y; Mitsunaga T
    FEMS Microbiol Lett; 1996 Aug; 142(1):49-52. PubMed ID: 8759789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics and transcriptomics insights into the C1 metabolic model of a formaldehyde-degrading strain Methylobacterium sp. XJLW.
    Shao Y; Li J; Wang Y; Yi F; Zhang Y; Cui P; Zhong W
    Mol Omics; 2019 Apr; 15(2):138-149. PubMed ID: 30785446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric Assays for Measuring Hydroxypyruvate Reductase Activity.
    Liepman AH; Jaworski M; Ramirez-Lopez C
    Methods Mol Biol; 2024; 2792():77-81. PubMed ID: 38861079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-beta-hydroxybutyrate-deficient strain of the facultative methylotroph Methylobacterium extorquens AM1.
    FitzGerald KA; Lidstrom ME
    Biotechnol Bioeng; 2003 Feb; 81(3):263-8. PubMed ID: 12474248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.
    Kiefer P; Buchhaupt M; Christen P; Kaup B; Schrader J; Vorholt JA
    PLoS One; 2009 Nov; 4(11):e7831. PubMed ID: 19915676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymology of the reduction of hydroxypyruvate and glyoxylate in a mutant of barley lacking peroxisomal hydroxypyruvate reductase.
    Kleczkowski LA; Edwards GE; Blackwell RD; Lea PJ; Givan CV
    Plant Physiol; 1990 Oct; 94(2):819-25. PubMed ID: 16667783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Genomic Analysis of a
    Zhang X; Xia L; Liu J; Wang Z; Yang Y; Wu Y; Yang Q; Huang L; Shen P
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxalate as a potent and selective inhibitor of spinach (Spinacia oleracea) leaf NADPH-dependent hydroxypyruvate reductase.
    Kleczkowski LA; Randall DD; Edwards GE
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):125-7. PubMed ID: 2039466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde-limited cultivation of a newly isolated methylotrophic bacterium, Methylobacterium sp. MF1: enzymatic analysis related to C1 metabolism.
    Mitsui R; Omori M; Kitazawa H; Tanaka M
    J Biosci Bioeng; 2005 Jan; 99(1):18-22. PubMed ID: 16233748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional analysis of the genome fragment involved in aerobic dichloromethane degradation by methylobacterium dichloromethanicum DM4].
    Firsova IuE; Fedorov DN; Trotsenko IuA
    Prikl Biokhim Mikrobiol; 2012; 48(5):516-21. PubMed ID: 23101389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics and analysis of the mechanism of PQQ overproduction in Methylobacterium.
    Zhao C; Wan Y; Cao X; Zhang H; Bao X
    World J Microbiol Biotechnol; 2021 May; 37(6):100. PubMed ID: 33983497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.