BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17653775)

  • 1. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation.
    Stokes IA
    Eur Spine J; 2007 Oct; 16(10):1621-8. PubMed ID: 17653775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis.
    Stokes IA; Gardner-Morse M
    Spine (Phila Pa 1976); 2004 Oct; 29(19):2103-7. PubMed ID: 15454699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature.
    Stokes IA
    Spine (Phila Pa 1976); 1997 Nov; 22(21):2495-503. PubMed ID: 9383855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical modulation of spinal growth and progression of adolescent scoliosis.
    Stokes IA
    Stud Health Technol Inform; 2008; 135():75-83. PubMed ID: 18401082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the change in three dimensional deformity for idiopathic scoliosis using axially loaded MRI.
    Little JP; Izatt MT; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):415-21. PubMed ID: 22226470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation.
    Hachem B; Aubin CE; Parent S
    Eur Spine J; 2017 Jun; 26(6):1610-1617. PubMed ID: 28070685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of muscles and effects of load on growth.
    Stokes I; Gardner-Morse M
    Stud Health Technol Inform; 2002; 91():314-7. PubMed ID: 15457745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.
    Little JP; Pearcy MJ; Izatt MT; Boom K; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():220-8. PubMed ID: 26658078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumbar vertebral growth is governed by "chondral growth force response curve" rather than "Hueter-Volkmann law": a clinico-biomechanical study of growth modulation changes in childhood spinal tuberculosis.
    Rajasekaran S; Natarajan RN; Babu JN; Kanna PR; Shetty AP; Andersson GB
    Spine (Phila Pa 1976); 2011 Oct; 36(22):E1435-45. PubMed ID: 21343857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical modulation of growth for the correction of vertebral wedge deformities.
    Mente PL; Aronsson DD; Stokes IA; Iatridis JC
    J Orthop Res; 1999 Jul; 17(4):518-24. PubMed ID: 10459757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curve progression in idiopathic scoliosis: follow-up study to skeletal maturity.
    Tan KJ; Moe MM; Vaithinathan R; Wong HK
    Spine (Phila Pa 1976); 2009 Apr; 34(7):697-700. PubMed ID: 19333102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Curve Progression in Idiopathic Scoliosis: Validation of the Sanders Skeletal Maturity Staging System.
    Sitoula P; Verma K; Holmes L; Gabos PG; Sanders JO; Yorgova P; Neiss G; Rogers K; Shah SA
    Spine (Phila Pa 1976); 2015 Jul; 40(13):1006-13. PubMed ID: 26356067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical modulation of vertebral body growth. Implications for scoliosis progression.
    Stokes IA; Spence H; Aronsson DD; Kilmer N
    Spine (Phila Pa 1976); 1996 May; 21(10):1162-7. PubMed ID: 8727190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation.
    Huynh AM; Aubin CE; Mathieu PA; Labelle H
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):392-9. PubMed ID: 17204354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical spinal growth modulation and progressive adolescent scoliosis--a test of the 'vicious cycle' pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE.
    Stokes IA; Burwell RG; Dangerfield PH;
    Scoliosis; 2006 Oct; 1():16. PubMed ID: 17049077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Growth modulation in operative treatment of juvenile scoliosis by USS paediatric].
    Pfandlsteiner T; Wallnoefer P; Wimmer C
    Oper Orthop Traumatol; 2010 May; 22(2):149-63. PubMed ID: 20711826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.