These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17654333)
1. A new descriptor selection scheme for SVM in unbalanced class problem: a case study using skin sensitisation dataset. Li S; Fedorowicz A; Andrew ME SAR QSAR Environ Res; 2007; 18(5-6):423-41. PubMed ID: 17654333 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests. Xin N; Gu XF; Wu H; Hu YZ; Yang ZL Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():18-24. PubMed ID: 22240232 [TBL] [Abstract][Full Text] [Related]
3. Classification of estrogen receptor-beta ligands on the basis of their binding affinities using support vector machine and linear discriminant analysis. Luan F; Liu HT; Ma WP; Fan BT Eur J Med Chem; 2008 Jan; 43(1):43-52. PubMed ID: 17459530 [TBL] [Abstract][Full Text] [Related]
4. Brain tumor classification based on long echo proton MRS signals. Lukas L; Devos A; Suykens JA; Vanhamme L; Howe FA; Majós C; Moreno-Torres A; Van der Graaf M; Tate AR; Arús C; Van Huffel S Artif Intell Med; 2004 May; 31(1):73-89. PubMed ID: 15182848 [TBL] [Abstract][Full Text] [Related]
5. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. Widjaja E; Zheng W; Huang Z Int J Oncol; 2008 Mar; 32(3):653-62. PubMed ID: 18292943 [TBL] [Abstract][Full Text] [Related]
6. Application of the random forest method in studies of local lymph node assay based skin sensitization data. Li S; Fedorowicz A; Singh H; Soderholm SC J Chem Inf Model; 2005; 45(4):952-64. PubMed ID: 16045289 [TBL] [Abstract][Full Text] [Related]
7. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Chen Z; Li J; Wei L Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055 [TBL] [Abstract][Full Text] [Related]
8. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. Kamruzzaman J; Begg RK IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205 [TBL] [Abstract][Full Text] [Related]
10. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. Melgani F; Bazi Y IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):667-77. PubMed ID: 18779082 [TBL] [Abstract][Full Text] [Related]
11. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. Niijima S; Kuhara S BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691 [TBL] [Abstract][Full Text] [Related]
12. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Byvatov E; Fechner U; Sadowski J; Schneider G J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437 [TBL] [Abstract][Full Text] [Related]
13. The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Yan Z; Wang Z; Xie H Comput Methods Programs Biomed; 2008 Jun; 90(3):275-84. PubMed ID: 18295367 [TBL] [Abstract][Full Text] [Related]
14. Using classification structure pharmacokinetic relationship (SCPR) method to predict drug bioavailability based on grid-search support vector machine. Wang J; Du H; Yao X; Hu Z Anal Chim Acta; 2007 Oct; 601(2):156-63. PubMed ID: 17920387 [TBL] [Abstract][Full Text] [Related]
15. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Cho BH; Yu H; Kim KW; Kim TH; Kim IY; Kim SI Artif Intell Med; 2008 Jan; 42(1):37-53. PubMed ID: 17997291 [TBL] [Abstract][Full Text] [Related]
16. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Louis B; Agrawal VK; Khadikar PV Eur J Med Chem; 2010 Sep; 45(9):4018-25. PubMed ID: 20584562 [TBL] [Abstract][Full Text] [Related]
17. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
18. Support vector machine-based quantitative structure-activity relationship study of cholesteryl ester transfer protein inhibitors. Riahi S; Pourbasheer E; Ganjali MR; Norouzi P Chem Biol Drug Des; 2009 May; 73(5):558-71. PubMed ID: 19323654 [TBL] [Abstract][Full Text] [Related]
19. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201. Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373 [TBL] [Abstract][Full Text] [Related]
20. Quantitative structure-activity relationship and classification analysis of diaryl ureas against vascular endothelial growth factor receptor-2 kinase using linear and non-linear models. Sun M; Chen J; Wei H; Yin S; Yang Y; Ji M Chem Biol Drug Des; 2009 Jun; 73(6):644-54. PubMed ID: 19635056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]