BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17654338)

  • 1. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    SAR QSAR Environ Res; 2007; 18(5-6):579-93. PubMed ID: 17654338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of chemical mixture interactions modulating dermal absorption using a multiple membrane fiber array.
    Baynes RE; Xia XR; Imran M; Riviere JE
    Chem Res Toxicol; 2008 Mar; 21(3):591-9. PubMed ID: 18298091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-coated fiber array approach for predicting skin permeability of chemical mixtures from different vehicles.
    Riviere JE; Baynes RE; Xia XR
    Toxicol Sci; 2007 Sep; 99(1):153-61. PubMed ID: 17557907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical origin for the nonlinear sorption of very hydrophobic organic chemicals in a membrane-like polymer film.
    Yang ZY; Zhao YY; Tao FM; Ran Y; Mai BX; Zeng EY
    Chemosphere; 2007 Nov; 69(10):1518-24. PubMed ID: 17624407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydrophobicity ruler approach for determining the octanol/water partition coefficients of very hydrophobic compounds via their polymer/solvent solution distribution coefficients.
    Kong XQ; Shea D; Gebreyes WA; Xia XR
    Anal Chem; 2005 Mar; 77(5):1275-81. PubMed ID: 15732907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of membrane-solvent-solute interactions on solute permeation in model membranes.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 May; 336(1):108-14. PubMed ID: 17204382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model.
    Sprunger L; Proctor A; Acree WE; Abraham MH
    J Chromatogr A; 2007 Dec; 1175(2):162-73. PubMed ID: 17996877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis.
    Chen LL; Yao J; Yang JB; Yang J
    Acta Pharmacol Sin; 2005 Nov; 26(11):1322-33. PubMed ID: 16225754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression method of the hydrophobicity ruler approach for determining octanol/water partition coefficients of very hydrophobic compounds.
    Kong XQ; Shea D; Baynes RE; Riviere JE; Xia XR
    Chemosphere; 2007 Jan; 66(6):1086-93. PubMed ID: 16887166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of polydimethylsiloxane-air partition coefficients using headspace sorptive extraction.
    De Coensel N; Desmet K; Górecki T; Sandra P
    J Chromatogr A; 2007 May; 1150(1-2):183-9. PubMed ID: 17097669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic considerations of solvent/enhancer uptake into a model membrane.
    McAuley WJ; Oliveira G; Mohammed D; Beezer AE; Hadgraft J; Lane ME
    Int J Pharm; 2010 Aug; 396(1-2):134-9. PubMed ID: 20600719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mixture effects of JP-8(100) additives on the dermal absorption and disposition of jet fuel hydrocarbons in different membrane model systems.
    Muhammad F; Brooks JD; Riviere JE
    Toxicol Lett; 2004 May; 150(3):351-65. PubMed ID: 15110087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting dermal permeability of biocides in commercial cutting fluids using a LSER approach.
    Vijay V; Yeatts JL; Riviere JE; Baynes RE
    Toxicol Lett; 2007 Dec; 175(1-3):34-43. PubMed ID: 18029120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF).
    Gevers LE; Vankelecom IF; Jacobs PA
    Chem Commun (Camb); 2005 May; (19):2500-2. PubMed ID: 15886784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A solvatochromatic approach to quantifying formulation effects on dermal permeability.
    Baynes RE; Xia XR; Vijay V; Riviere JE
    SAR QSAR Environ Res; 2008; 19(7-8):615-30. PubMed ID: 19061079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds.
    DiFilippo EL; Eganhouse RP
    Environ Sci Technol; 2010 Sep; 44(18):6917-25. PubMed ID: 20726511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.
    Li J; Sun J; Cui S; He Z
    J Chromatogr A; 2006 Nov; 1132(1-2):174-82. PubMed ID: 16919656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of different amount of Au on the wetting behavior of PDMS membrane.
    Feng JT; Zhao YP
    Biomed Microdevices; 2008 Feb; 10(1):65-72. PubMed ID: 17659443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimentally based approach for predicting skin permeability of chemicals and drugs using a membrane-coated fiber array.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Toxicol Appl Pharmacol; 2007 Jun; 221(3):320-8. PubMed ID: 17493652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.