BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 17654456)

  • 1. Visible light induced catalytic water reduction without an electron relay.
    Tinker LL; McDaniel ND; Curtin PN; Smith CK; Ireland MJ; Bernhard S
    Chemistry; 2007; 13(31):8726-32. PubMed ID: 17654456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.
    Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG
    ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production.
    Goldsmith JI; Hudson WR; Lowry MS; Anderson TH; Bernhard S
    J Am Chem Soc; 2005 May; 127(20):7502-10. PubMed ID: 15898800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular electron transfer from photogenerated Ru(bpy)3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site.
    Na Y; Pan J; Wang M; Sun L
    Inorg Chem; 2007 May; 46(10):3813-5. PubMed ID: 17417837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic iridium hydrides: implications for aerobic and Oppenauer oxidation of alcohols.
    Gabrielsson A; van Leeuwen P; Kaim W
    Chem Commun (Camb); 2006 Dec; (47):4926-7. PubMed ID: 17136249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution.
    Cui HH; Hu MQ; Wen HM; Chai GL; Ma CB; Chen H; Chen CN
    Dalton Trans; 2012 Dec; 41(45):13899-907. PubMed ID: 23023604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclodextrin-based systems for photoinduced hydrogen evolution.
    Mourtzis N; Carballada PC; Felici M; Nolte RJ; Williams RM; de Cola L; Feiters MC
    Phys Chem Chem Phys; 2011 May; 13(17):7903-9. PubMed ID: 21442122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures.
    Djurovich PI; Murphy D; Thompson ME; Hernandez B; Gao R; Hunt PL; Selke M
    Dalton Trans; 2007 Sep; (34):3763-70. PubMed ID: 17712442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic bis-cyclometallated iridium(III) phenanthroline complexes with pendant fluorenyl substituents: synthesis, redox, photophysical properties and light-emitting cells.
    Zeng X; Tavasli M; Perepichka IF; Batsanov AS; Bryce MR; Chiang CJ; Rothe C; Monkman AP
    Chemistry; 2008; 14(3):933-43. PubMed ID: 18033698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic production of hydrogen by disproportionation of one-electron-reduced rhodium and iridium-ruthenium complexes in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    Angew Chem Int Ed Engl; 2011 Jan; 50(3):728-31. PubMed ID: 21226164
    [No Abstract]   [Full Text] [Related]  

  • 11. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols.
    Fujita K; Tanino N; Yamaguchi R
    Org Lett; 2007 Jan; 9(1):109-11. PubMed ID: 17192097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore.
    Du P; Schneider J; Jarosz P; Eisenberg R
    J Am Chem Soc; 2006 Jun; 128(24):7726-7. PubMed ID: 16771472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.
    McDonald AR; Lutz M; von Chrzanowski LS; van Klink GP; Spek AL; van Koten G
    Inorg Chem; 2008 Aug; 47(15):6681-91. PubMed ID: 18588287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts.
    Heiden ZM; Rauchfuss TB
    J Am Chem Soc; 2007 Nov; 129(46):14303-10. PubMed ID: 17958423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-coupled electron transfer from a luminescent excited state.
    Freys JC; Bernardinelli G; Wenger OS
    Chem Commun (Camb); 2008 Sep; (36):4267-9. PubMed ID: 18802539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator.
    Tanaka H; Nishikawa H; Uchida T; Katsuki T
    J Am Chem Soc; 2010 Sep; 132(34):12034-41. PubMed ID: 20701287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes.
    Cline ED; Adamson SE; Bernhard S
    Inorg Chem; 2008 Nov; 47(22):10378-88. PubMed ID: 18939819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes.
    Hansen S; Pohl MM; Klahn M; Spannenberg A; Beweries T
    ChemSusChem; 2013 Jan; 6(1):92-101. PubMed ID: 23147800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system.
    Duan L; Xu Y; Zhang P; Wang M; Sun L
    Inorg Chem; 2010 Jan; 49(1):209-15. PubMed ID: 19994841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.