BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17654604)

  • 41. The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway.
    Delfini MC; De La Celle M; Gros J; Serralbo O; Marics I; Seux M; Scaal M; Marcelle C
    Dev Biol; 2009 Sep; 333(2):229-37. PubMed ID: 19445915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gdf6a is required for the initiation of dorsal-ventral retinal patterning and lens development.
    French CR; Erickson T; French DV; Pilgrim DB; Waskiewicz AJ
    Dev Biol; 2009 Sep; 333(1):37-47. PubMed ID: 19545559
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revealing the mechanisms of the rostral shift of pelvic fins among teleost fishes.
    Tanaka M
    Evol Dev; 2011; 13(4):382-90. PubMed ID: 21740511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differentiation of electric organ from muscle precursor in the regenerating tail of a weakly electric teleost: a morphogenetic approach.
    Srivastava CB
    Indian J Exp Biol; 1978 Jul; 16(7):762-7. PubMed ID: 700812
    [No Abstract]   [Full Text] [Related]  

  • 45. Fss/Tbx6 is required for central dermomyotome cell fate in zebrafish.
    Windner SE; Bird NC; Patterson SE; Doris RA; Devoto SH
    Biol Open; 2012 Aug; 1(8):806-14. PubMed ID: 23213474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of myogenic specification and patterning.
    Applebaum M; Kalcheim C
    Results Probl Cell Differ; 2015; 56():77-98. PubMed ID: 25344667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How animals get their skin patterns: fish pigment pattern as a live Turing wave.
    Kondo S; Iwashita M; Yamaguchi M
    Int J Dev Biol; 2009; 53(5-6):851-6. PubMed ID: 19557690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrinsic cartilage-forming potential of dermomyotomal cells requires ectodermal signals for the development of the scapula blade.
    Ehehalt F; Wang B; Christ B; Patel K; Huang R
    Anat Embryol (Berl); 2004 Sep; 208(6):431-7. PubMed ID: 15338302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hematopoietic cell development in the zebrafish embryo.
    Bertrand JY; Traver D
    Curr Opin Hematol; 2009 Jul; 16(4):243-8. PubMed ID: 19491671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oscillators and the emergence of tissue organization during zebrafish somitogenesis.
    Mara A; Holley SA
    Trends Cell Biol; 2007 Dec; 17(12):593-9. PubMed ID: 17988868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path).
    Shkil F; Siomava N; Voronezhskaya E; Diogo R
    Sci Rep; 2019 Apr; 9(1):5413. PubMed ID: 30931985
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages.
    Ahn D; Ho RK
    Dev Biol; 2008 Oct; 322(1):220-33. PubMed ID: 18638469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric cell divisions are concentrated in the dermomyotome dorsomedial lip during epaxial primary myotome morphogenesis.
    Venters SJ; Ordahl CP
    Anat Embryol (Berl); 2005 Jul; 209(6):449-60. PubMed ID: 15891908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis.
    Anderson C; Winder SJ; Borycki AG
    Dev Dyn; 2007 Sep; 236(9):2627-35. PubMed ID: 17676646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new evolutionary scenario for the vertebrate jaw.
    Shigetani Y; Sugahara F; Kuratani S
    Bioessays; 2005 Mar; 27(3):331-8. PubMed ID: 15714557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 double-morphant zebrafish embryo.
    Schnapp E; Pistocchi AS; Karampetsou E; Foglia E; Lamia CL; Cotelli F; Cossu G
    J Cell Sci; 2009 Feb; 122(Pt 4):481-8. PubMed ID: 19193870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome.
    Olivera-Martinez I; Thélu J; Dhouailly D
    Int J Dev Biol; 2004; 48(2-3):93-101. PubMed ID: 15272374
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Six1a is required for the onset of fast muscle differentiation in zebrafish.
    Bessarab DA; Chong SW; Srinivas BP; Korzh V
    Dev Biol; 2008 Nov; 323(2):216-28. PubMed ID: 18789916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zebrafish development and regeneration: new tools for biomedical research.
    Brittijn SA; Duivesteijn SJ; Belmamoune M; Bertens LF; Bitter W; de Bruijn JD; Champagne DL; Cuppen E; Flik G; Vandenbroucke-Grauls CM; Janssen RA; de Jong IM; de Kloet ER; Kros A; Meijer AH; Metz JR; van der Sar AM; Schaaf MJ; Schulte-Merker S; Spaink HP; Tak PP; Verbeek FJ; Vervoordeldonk MJ; Vonk FJ; Witte F; Yuan H; Richardson MK
    Int J Dev Biol; 2009; 53(5-6):835-50. PubMed ID: 19557689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle.
    Ben-Yair R; Kalcheim C
    J Cell Biol; 2008 Feb; 180(3):607-18. PubMed ID: 18268106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.