These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17654951)

  • 21. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.
    Xu T; Dick KA; Plissard S; Nguyen TH; Makoudi Y; Berthe M; Nys JP; Wallart X; Grandidier B; Caroff P
    Nanotechnology; 2012 Mar; 23(9):095702. PubMed ID: 22322440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-dependent growth direction of ultrathin ZnSe nanowires.
    Cai Y; Chan SK; Sou IK; Chan YF; Su DS; Wang N
    Small; 2007 Jan; 3(1):111-5. PubMed ID: 17294480
    [No Abstract]   [Full Text] [Related]  

  • 23. The morphology of silicon nanowires grown in the presence of trimethylaluminium.
    Oehler F; Gentile P; Baron T; Hertog MD; Rouvière J; Ferret P
    Nanotechnology; 2009 Jun; 20(24):245602. PubMed ID: 19471089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.
    De Padova P; Ottaviani C; Ronci F; Colonna S; Olivieri B; Quaresima C; Cricenti A; Dávila ME; Hennies F; Pietzsch A; Shariati N; Le Lay G
    J Phys Condens Matter; 2013 Jan; 25(1):014009. PubMed ID: 23221272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires.
    Patla I; Acharya S; Zeiri L; Israelachvili J; Efrima S; Golan Y
    Nano Lett; 2007 Jun; 7(6):1459-62. PubMed ID: 17488046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires.
    Hoffmann S; Utke I; Moser B; Michler J; Christiansen SH; Schmidt V; Senz S; Werner P; Gösele U; Ballif C
    Nano Lett; 2006 Apr; 6(4):622-5. PubMed ID: 16608255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.
    Sutter E; Sutter P
    Nano Lett; 2008 Feb; 8(2):411-4. PubMed ID: 18193910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth.
    Paulose M; Varghese OK; Grimes CA
    J Nanosci Nanotechnol; 2003 Aug; 3(4):341-6. PubMed ID: 14598450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iridium silicide nanowires on Si(001) surfaces.
    Oncel N; Nicholls D
    J Phys Condens Matter; 2013 Jan; 25(1):014010. PubMed ID: 23221319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission electron microscopy investigation of Sb-doped ZnO nanoribbons and Zn7Sb2O12 branched ZnO nanoribbon structure.
    Zou K; Zhou S; Zhang X; Qi X; Duan X
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2200-3. PubMed ID: 17025150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning the characteristics of electrochemically fabricated gold nanowires.
    Karim S; Ensinger W; Cornelius TW; Khan EU; Neumann R
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5659-66. PubMed ID: 19198285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Band-offset driven efficiency of the doping of SiGe core-shell nanowires.
    Amato M; Ossicini S; Rurali R
    Nano Lett; 2011 Feb; 11(2):594-8. PubMed ID: 21188962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of gold surface diffusion on si nanowires.
    den Hertog MI; Rouviere JL; Dhalluin F; Desré PJ; Gentile P; Ferret P; Oehler F; Baron T
    Nano Lett; 2008 May; 8(5):1544-50. PubMed ID: 18422363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires.
    Sohn JI; Joo HJ; Porter AE; Choi CJ; Kim K; Kang DJ; Welland ME
    Nano Lett; 2007 Jun; 7(6):1570-4. PubMed ID: 17508769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography.
    Zschech D; Kim DH; Milenin AP; Scholz R; Hillebrand R; Hawker CJ; Russell TP; Steinhart M; Gösele U
    Nano Lett; 2007 Jun; 7(6):1516-20. PubMed ID: 17530809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge carrier separation in modulation doped coaxial semiconductor nanowires.
    Nduwimana A; Wang XQ
    Nano Lett; 2009 Jan; 9(1):283-6. PubMed ID: 19143504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction.
    Juhasz R; Elfström N; Linnros J
    Nano Lett; 2005 Feb; 5(2):275-80. PubMed ID: 15794610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled formation and resistivity scaling of nickel silicide nanolines.
    Li B; Luo Z; Shi L; Zhou J; Rabenberg L; Ho PS; Allen RA; Cresswell MW
    Nanotechnology; 2009 Feb; 20(8):085304. PubMed ID: 19417448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.