These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17654989)

  • 1. Nanostructuring of InP surface by low-energy ion beam irradiation.
    Mohanta SK; Soni RK; Tripathy S; Chua SJ; Kanjilal D
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2046-50. PubMed ID: 17654989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and optical characterization of strained free-standing InP nanowires.
    González JC; da Silva MI; Lozano XS; Zanchet D; Ugarte D; Ribeiro E; Gutiérrez HR; Cotta MA
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2182-6. PubMed ID: 17025146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modification of Si nanocrystallites embedded in a dielectric matrix by high energy ion irradiation.
    Antonova IV; Gulyaev MB; Cherkov AG; Volodin VA; Marin DV; Skuratov VA; Jedrzejewski J; Balberg I
    Nanotechnology; 2009 Mar; 20(9):095205. PubMed ID: 19417483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic spin control in InAs/InP nanowire quantum dots.
    Romeo L; Roddaro S; Pitanti A; Ercolani D; Sorba L; Beltram F
    Nano Lett; 2012 Sep; 12(9):4490-4. PubMed ID: 22849393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sol-gel synthesis of luminescent InP nanocrystals embedded in silica glasses.
    Yang H; Huang D; Wang X; Gu X; Wang F; Xie S; Yao X
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1737-40. PubMed ID: 16245538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The creation of sub-10 nm In(PO3)3 nanocrystals in an insulating matrix, and underlying formation mechanisms.
    Yuk JM; Kim TW; Lee JY; No YS; Kim DH; Choi WK; Jin S
    Nanotechnology; 2009 Feb; 20(5):055703. PubMed ID: 19417362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular beam epitaxial growth and characterization of catalyst-free InN/InxGa1-xN core/shell nanowire heterostructures on Si(111) substrates.
    Cui K; Fathololoumi S; Golam Kibria M; Botton GA; Mi Z
    Nanotechnology; 2012 Mar; 23(8):085205. PubMed ID: 22293649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling on the size dependent properties of InP quantum dots: a hybrid functional study.
    Cho E; Jang H; Lee J; Jang E
    Nanotechnology; 2013 May; 24(21):215201. PubMed ID: 23619206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between crystal phase purity and radial growth in InP nanowires.
    Poole PJ; Dalacu D; Wu X; Lapointe J; Mnaymneh K
    Nanotechnology; 2012 Sep; 23(38):385205. PubMed ID: 22948129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions.
    Fakhr A; Haddara YM; Lapierre RR
    Nanotechnology; 2010 Apr; 21(16):165601. PubMed ID: 20348594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber.
    Tsukamoto S; Honma T; Bell GR; Ishii A; Arakawa Y
    Small; 2006 Mar; 2(3):386-9. PubMed ID: 17193056
    [No Abstract]   [Full Text] [Related]  

  • 12. High optical quality InP-based nanopillars fabricated by a top-down approach.
    Naureen S; Sanatinia R; Shahid N; Anand S
    Nano Lett; 2011 Nov; 11(11):4805-11. PubMed ID: 21942530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.
    Lugani L; Ercolani D; Sorba L; Sibirev NV; Timofeeva MA; Dubrovskii VG
    Nanotechnology; 2012 Mar; 23(9):095602. PubMed ID: 22322330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates.
    Aagesen M; Johnson E; Sørensen CB; Mariager SO; Feidenhans'l R; Spiecker E; Nygård J; Lindelof PE
    Nat Nanotechnol; 2007 Dec; 2(12):761-4. PubMed ID: 18654427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The scaling of the effective band gaps in indium-arsenide quantum dots and wires.
    Wang F; Yu H; Jeong S; Pietryga JM; Hollingsworth JA; Gibbons PC; Buhro WE
    ACS Nano; 2008 Sep; 2(9):1903-13. PubMed ID: 19206431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of quantum confinement effect in nanocrystal Si dot layer by Raman spectroscopy.
    Mizukami Y; Kosemura D; Numasawa Y; Ohshita Y; Ogura A
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8700-3. PubMed ID: 23421269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
    Yu H; Li J; Loomis RA; Wang LW; Buhro WE
    Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional growth of indium phosphide nanowires.
    Ikejiri K; Ishizaka F; Tomioka K; Fukui T
    Nano Lett; 2012 Sep; 12(9):4770-4. PubMed ID: 22888965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons.
    Wu XL; Xiong SJ; Sun LT; Shen JC; Chu PK
    Small; 2009 Dec; 5(24):2823-6. PubMed ID: 19882689
    [No Abstract]   [Full Text] [Related]  

  • 20. Manifold enhancement of electron beam induced deposition rate at grazing incidence.
    Sychugov I; Nakayama Y; Mitsuishi K
    Nanotechnology; 2010 Jan; 21(2):025303. PubMed ID: 19955608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.