These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17655017)

  • 1. Raman scattering studies of InP nanostructures created by MeV Sb ion implantation.
    Paramanik D; Varma S
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2197-200. PubMed ID: 17655017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of self-organized nanostructures on InP(111) surfaces after low energy Ar+ ion irradiation.
    Paramanik D; Majumdar S; Sahoo SR; Sahu SN; Varma S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4227-30. PubMed ID: 19049208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.
    Sulania I; Agarwal DC; Kumar M; Kumar S; Kumar P
    Phys Chem Chem Phys; 2016 Jul; 18(30):20363-70. PubMed ID: 27400760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructuring of InP surface by low-energy ion beam irradiation.
    Mohanta SK; Soni RK; Tripathy S; Chua SJ; Kanjilal D
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2046-50. PubMed ID: 17654989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient ion-slicing of InP thin film for Si-based hetero-integration.
    Lin J; You T; Wang M; Huang K; Zhang S; Jia Q; Zhou M; Yu W; Zhou S; Wang X; Ou X
    Nanotechnology; 2018 Dec; 29(50):504002. PubMed ID: 30229744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage to epitaxial GaN layer on Al
    Zhang LQ; Zhang CH; Li JJ; Meng YC; Yang YT; Song Y; Ding ZN; Yan TX
    Sci Rep; 2018 Mar; 8(1):4121. PubMed ID: 29515199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling studies of nano dots formed on InP(111) surfaces via MeV implantation.
    Paramanik D; Sahoo SR; Majumdar S; Varma S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4207-10. PubMed ID: 19049204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KeV ion-induced effective surface modifications on InP.
    Sulania I; Tripathi A; Kabiraj D; Varma S; Avasthi DK
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4163-7. PubMed ID: 19049195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.
    Gnaser H; Radny T
    Ultramicroscopy; 2015 Dec; 159 Pt 2():232-9. PubMed ID: 25980895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.
    Costantini JM; Miro S; Beuneu F; Toulemonde M
    J Phys Condens Matter; 2015 Dec; 27(49):496001. PubMed ID: 26580459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applications.
    Plesco I; Strobel J; Schütt F; Himcinschi C; Ben Sedrine N; Monteiro T; Correia MR; Gorceac L; Cinic B; Ursaki V; Marx J; Fiedler B; Mishra YK; Kienle L; Adelung R; Tiginyanu I
    Sci Rep; 2018 Sep; 8(1):13880. PubMed ID: 30224739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires.
    Kamimura H; Gouveia RC; Carrocine SC; Souza LD; Rodrigues AD; Teodoro MD; Marques GE; Leite ER; Chiquito AJ
    J Phys Condens Matter; 2016 Nov; 28(47):475303. PubMed ID: 27662434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and optical characterization of strained free-standing InP nanowires.
    González JC; da Silva MI; Lozano XS; Zanchet D; Ugarte D; Ribeiro E; Gutiérrez HR; Cotta MA
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2182-6. PubMed ID: 17025146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.
    Radny T; Gnaser H
    Nanoscale Res Lett; 2014; 9(1):403. PubMed ID: 25246858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.
    Liu C; Dai L; You LP; Xu WJ; Qin GG
    Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N
    Das D; Rao MSR
    RSC Adv; 2021 Jul; 11(38):23686-23699. PubMed ID: 35479784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Temperature Raman Spectroscopy of Nano-Crystalline Carbon in Silicon Oxycarbide.
    Rosenburg F; Ionescu E; Nicoloso N; Riedel R
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29315211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using polycarbonate membranes as templates for the preparation of Au nanostructures for surface-enhanced Raman scattering.
    Batista EA; dos Santos DP; Andrade GF; Sant'Ana AC; Brolo AG; Temperini ML
    J Nanosci Nanotechnol; 2009 May; 9(5):3233-8. PubMed ID: 19452996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeV Au irradiation induced nanoparticle formation and recrystallization in a low energy Au implanted Si layer.
    Sahu G; Joseph B; Lenka HP; Kuiri PK; Pradhan A; Mahapatra DP
    Nanotechnology; 2007 Dec; 18(49):495702. PubMed ID: 20442483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman scattering by confined optical phonons in Si and Ge nanostructures.
    Alfaro P; Cisneros R; Bizarro M; Cruz-Irisson M; Wang C
    Nanoscale; 2011 Mar; 3(3):1246-51. PubMed ID: 21270988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.