BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17655091)

  • 21. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm.
    Black JF; Wade N; Barton JK
    Lasers Surg Med; 2005 Feb; 36(2):155-65. PubMed ID: 15704164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Non-invasive determination of the optical properties of neonatal brain].
    Zhao J; Ding HS; Hou XL; Zhou CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1768-71. PubMed ID: 16499039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue.
    Wei HJ; Xing D; He BH; Gu HM; Wu GY; Chen XM
    BMC Gastroenterol; 2009 Aug; 9():64. PubMed ID: 19715589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dehydration on the optical properties of in vitro porcine liver.
    Zhu D; Luo Q; Cen J
    Lasers Surg Med; 2003; 33(4):226-31. PubMed ID: 14571446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of optical properties to quantify healing of chronic diabetic wounds.
    Weingarten MS; Papazoglou E; Zubkov L; Zhu L; Vorona G; Walchack A
    Wound Repair Regen; 2006; 14(3):364-70. PubMed ID: 16808817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm.
    Nau WH; Roselli RJ; Milam DF
    Lasers Surg Med; 1999; 24(1):38-47. PubMed ID: 10037350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range.
    Yaroslavsky AN; Schulze PC; Yaroslavsky IV; Schober R; Ulrich F; Schwarzmaier HJ
    Phys Med Biol; 2002 Jun; 47(12):2059-73. PubMed ID: 12118601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets.
    Kessler W; Oelkrug D; Kessler R
    Anal Chim Acta; 2009 May; 642(1-2):127-34. PubMed ID: 19427467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.
    Salomatina E; Yaroslavsky AN
    Phys Med Biol; 2008 Jun; 53(11):2797-807. PubMed ID: 18451462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy.
    Liu H; Miwa M; Beauvoit B; Wang NG; Chance B
    Anal Biochem; 1993 Sep; 213(2):378-85. PubMed ID: 8238914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm.
    Beek JF; Blokland P; Posthumus P; Aalders M; Pickering JW; Sterenborg HJ; van Gemert MJ
    Phys Med Biol; 1997 Nov; 42(11):2255-61. PubMed ID: 9394410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues.
    Pu Y; Wang W; Al-Rubaiee M; Gayen SK; Xu M
    Appl Spectrosc; 2012 Jul; 66(7):828-34. PubMed ID: 22710079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method to estimate the ratio of absorption coefficients of two wavelengths using phase-modulated near infrared light spectroscopy.
    Haida M; Miwa M; Shiino A; Chance B
    Anal Biochem; 1993 Feb; 208(2):348-51. PubMed ID: 8452231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques.
    Wei HJ; Xing D; Lu JJ; Gu HM; Wu GY; Jin Y
    World J Gastroenterol; 2005 Apr; 11(16):2413-9. PubMed ID: 15832410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose.
    Raymond JL; Cleveland RO; Roy RA
    Phys Med Biol; 2018 Dec; 63(24):245001. PubMed ID: 30524076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the optical properties (at 632.8 nm) of slowly heated myocardium.
    Pickering JW; Bosman S; Posthumus P; Blokland P; Beek JF; van Gemert MJ
    Appl Opt; 1993 Feb; 32(4):367-71. PubMed ID: 20802699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime.
    Foltynowicz A; Wang J; Ehlers P; Axner O
    Opt Express; 2010 Aug; 18(18):18580-91. PubMed ID: 20940750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scattering differentiates Alzheimer disease in vitro.
    Hanlon EB; Perelman LT; Vitkin EI; Greco FA; McKee AC; Kowall NW
    Opt Lett; 2008 Mar; 33(6):624-6. PubMed ID: 18347731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.