These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17655212)

  • 1. Extensive SAR and computational studies of 3-{4-[(benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-chromenone (AP2238) derivatives.
    Piazzi L; Cavalli A; Belluti F; Bisi A; Gobbi S; Rizzo S; Bartolini M; Andrisano V; Recanatini M; Rampa A
    J Med Chem; 2007 Aug; 50(17):4250-4. PubMed ID: 17655212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer's disease therapy.
    Piazzi L; Rampa A; Bisi A; Gobbi S; Belluti F; Cavalli A; Bartolini M; Andrisano V; Valenti P; Recanatini M
    J Med Chem; 2003 Jun; 46(12):2279-82. PubMed ID: 12773032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Alzheimer's disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238.
    Rizzo S; Bartolini M; Ceccarini L; Piazzi L; Gobbi S; Cavalli A; Recanatini M; Andrisano V; Rampa A
    Bioorg Med Chem; 2010 Mar; 18(5):1749-60. PubMed ID: 20171894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation.
    Belluti F; Rampa A; Piazzi L; Bisi A; Gobbi S; Bartolini M; Andrisano V; Cavalli A; Recanatini M; Valenti P
    J Med Chem; 2005 Jun; 48(13):4444-56. PubMed ID: 15974596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues.
    Bolognesi ML; Bartolini M; Cavalli A; Andrisano V; Rosini M; Minarini A; Melchiorre C
    J Med Chem; 2004 Nov; 47(24):5945-52. PubMed ID: 15537349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Brunhofer G; Fallarero A; Karlsson D; Batista-Gonzalez A; Shinde P; Gopi Mohan C; Vuorela P
    Bioorg Med Chem; 2012 Nov; 20(22):6669-79. PubMed ID: 23062825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Camps P; Formosa X; Galdeano C; Gómez T; Muñoz-Torrero D; Scarpellini M; Viayna E; Badia A; Clos MV; Camins A; Pallàs M; Bartolini M; Mancini F; Andrisano V; Estelrich J; Lizondo M; Bidon-Chanal A; Luque FJ
    J Med Chem; 2008 Jun; 51(12):3588-98. PubMed ID: 18517184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and biological evaluation of functionalized coumarins as acetylcholinesterase inhibitors.
    Shen Q; Peng Q; Shao J; Liu X; Huang Z; Pu X; Ma L; Li YM; Chan AS; Gu L
    Eur J Med Chem; 2005 Dec; 40(12):1307-15. PubMed ID: 16182411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarin-Based Derivatives.
    Montanari S; Bartolini M; Neviani P; Belluti F; Gobbi S; Pruccoli L; Tarozzi A; Falchi F; Andrisano V; Miszta P; Cavalli A; Filipek S; Bisi A; Rampa A
    ChemMedChem; 2016 Jun; 11(12):1296-308. PubMed ID: 26507467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors.
    Pisani L; Catto M; Giangreco I; Leonetti F; Nicolotti O; Stefanachi A; Cellamare S; Carotti A
    ChemMedChem; 2010 Sep; 5(9):1616-30. PubMed ID: 20677317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.
    Rizzo S; Cavalli A; Ceccarini L; Bartolini M; Belluti F; Bisi A; Andrisano V; Recanatini M; Rampa A
    ChemMedChem; 2009 Apr; 4(4):670-9. PubMed ID: 19222043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docking and quantum mechanic studies on cholinesterases and their inhibitors.
    Correa-Basurto J; Flores-Sandoval C; Marín-Cruz J; Rojo-Domínguez A; Espinoza-Fonseca LM; Trujillo-Ferrara JG
    Eur J Med Chem; 2007 Jan; 42(1):10-9. PubMed ID: 17055616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and in vitro screening of symmetrical bispyridinium cholinesterase inhibitors bearing different connecting linkage-initial study for Myasthenia gravis implications.
    Musilek K; Komloova M; Zavadova V; Holas O; Hrabinova M; Pohanka M; Dohnal V; Nachon F; Dolezal M; Kuca K; Jung YS
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1763-6. PubMed ID: 20138518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological evaluation of 3-thiazolocoumarinyl Schiff-base derivatives as cholinesterase inhibitors.
    Raza R; Saeed A; Arif M; Mahmood S; Muddassar M; Raza A; Iqbal J
    Chem Biol Drug Des; 2012 Oct; 80(4):605-15. PubMed ID: 22726458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 3. Effect of replacing the inner polymethylene chain with cyclic moieties.
    Tumiatti V; Andrisano V; Banzi R; Bartolini M; Minarini A; Rosini M; Melchiorre C
    J Med Chem; 2004 Dec; 47(26):6490-8. PubMed ID: 15588084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L; Shi A; He F; Li X
    Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine.
    Tumiatti V; Rosini M; Bartolini M; Cavalli A; Marucci G; Andrisano V; Angeli P; Banzi R; Minarini A; Recanatini M; Melchiorre C
    J Med Chem; 2003 Mar; 46(6):954-66. PubMed ID: 12620072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of (benzylidene-hydrazono)-1,4-dihydropyridines with beta-amyloid, acetylcholine, and butyrylcholine esterases.
    Alptüzün V; Prinz M; Hörr V; Scheiber J; Radacki K; Fallarero A; Vuorela P; Engels B; Braunschweig H; Erciyas E; Holzgrabe U
    Bioorg Med Chem; 2010 Mar; 18(5):2049-59. PubMed ID: 20149667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.