These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 17655281)
1. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance. Schechter NM; Choi EJ; Selwood T; McCaslin DR Biochemistry; 2007 Aug; 46(33):9615-29. PubMed ID: 17655281 [TBL] [Abstract][Full Text] [Related]
2. The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease. Selwood T; Smolensky H; McCaslin DR; Schechter NM Biochemistry; 2005 Mar; 44(9):3580-90. PubMed ID: 15736967 [TBL] [Abstract][Full Text] [Related]
3. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors. Fukuoka Y; Schwartz LB Biochemistry; 2004 Aug; 43(33):10757-64. PubMed ID: 15311937 [TBL] [Abstract][Full Text] [Related]
4. Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH. Ren S; Sakai K; Schwartz LB J Immunol; 1998 May; 160(9):4561-9. PubMed ID: 9574563 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers. Addington AK; Johnson DA Biochemistry; 1996 Oct; 35(42):13511-8. PubMed ID: 8885830 [TBL] [Abstract][Full Text] [Related]
6. Formation of active monomers from tetrameric human beta-tryptase. Fajardo I; Pejler G Biochem J; 2003 Feb; 369(Pt 3):603-10. PubMed ID: 12387726 [TBL] [Abstract][Full Text] [Related]
7. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase. Schwartz LB; Bradford TR; Lee DC; Chlebowski JF J Immunol; 1990 Mar; 144(6):2304-11. PubMed ID: 2179409 [TBL] [Abstract][Full Text] [Related]
8. Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase. Hallgren J; Lindahl S; Pejler G J Mol Biol; 2005 Jan; 345(1):129-39. PubMed ID: 15567416 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Selwood T; McCaslin DR; Schechter NM Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324 [TBL] [Abstract][Full Text] [Related]
10. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Pereira PJ; Bergner A; Macedo-Ribeiro S; Huber R; Matschiner G; Fritz H; Sommerhoff CP; Bode W Nature; 1998 Mar; 392(6673):306-11. PubMed ID: 9521329 [TBL] [Abstract][Full Text] [Related]
11. Dual functionality of β-tryptase protomers as both proteases and cofactors in the active tetramer. Maun HR; Liu PS; Franke Y; Eigenbrot C; Forrest WF; Schwartz LB; Lazarus RA J Biol Chem; 2018 Jun; 293(25):9614-9628. PubMed ID: 29661938 [TBL] [Abstract][Full Text] [Related]
12. Human tryptase fibrinogenolysis is optimal at acidic pH and generates anticoagulant fragments in the presence of the anti-tryptase monoclonal antibody B12. Ren S; Lawson AE; Carr M; Baumgarten CM; Schwartz LB J Immunol; 1997 Oct; 159(7):3540-8. PubMed ID: 9317153 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of antiplasmin at low pH: evidence for the formation of latent molecules. Wang H; Pap S; Wiman B Thromb Res; 2004; 114(4):301-6. PubMed ID: 15381394 [TBL] [Abstract][Full Text] [Related]
14. X-ray structures of free and leupeptin-complexed human alphaI-tryptase mutants: indication for an alpha-->beta-tryptase transition. Rohr KB; Selwood T; Marquardt U; Huber R; Schechter NM; Bode W; Than ME J Mol Biol; 2006 Mar; 357(1):195-209. PubMed ID: 16414069 [TBL] [Abstract][Full Text] [Related]
15. Diverse stability and catalytic properties of human tryptase alpha and beta isoforms are mediated by residue differences at the S1 pocket. Selwood T; Wang ZM; McCaslin DR; Schechter NM Biochemistry; 2002 Mar; 41(10):3329-40. PubMed ID: 11876641 [TBL] [Abstract][Full Text] [Related]
16. Potent bivalent inhibition of human tryptase-beta by a synthetic inhibitor. Selwood T; Elrod KC; Schechter NM Biol Chem; 2003 Dec; 384(12):1605-11. PubMed ID: 14719803 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of types of interactions in subunit association in Bacillus subtilis adenylosuccinate lyase. De Zoysa Ariyananda L; Colman RF Biochemistry; 2008 Mar; 47(9):2923-34. PubMed ID: 18237141 [TBL] [Abstract][Full Text] [Related]
18. The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH. Fukuoka Y; Schwartz LB J Immunol; 2006 Mar; 176(5):3165-72. PubMed ID: 16493076 [TBL] [Abstract][Full Text] [Related]
19. Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase. Schechter NM; Eng GY; Selwood T; McCaslin DR Biochemistry; 1995 Aug; 34(33):10628-38. PubMed ID: 7654717 [TBL] [Abstract][Full Text] [Related]
20. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. Hallgren J; Spillmann D; Pejler G J Biol Chem; 2001 Nov; 276(46):42774-81. PubMed ID: 11533057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]