These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 17655318)

  • 1. Metal-free one-pot oxidative amination of aldehydes to amides.
    Ekoue-Kovi K; Wolf C
    Org Lett; 2007 Aug; 9(17):3429-32. PubMed ID: 17655318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-free one-pot oxidative amidation of aldoses with functionalized amines.
    Colombeau L; Traoré T; Compain P; Martin OR
    J Org Chem; 2008 Nov; 73(21):8647-50. PubMed ID: 18841916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot oxidative esterification and amidation of aldehydes.
    Ekoue-Kovi K; Wolf C
    Chemistry; 2008; 14(21):6302-15. PubMed ID: 18523938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of amides from aldehydes and amines via C-H bond activation.
    Cadoni R; Porcheddu A; Giacomelli G; De Luca L
    Org Lett; 2012 Oct; 14(19):5014-7. PubMed ID: 22978698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides.
    Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A
    J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: catalysis by gum-acacia-stabilized palladium nanoparticles.
    Sreedhar B; Reddy PS; Devi DK
    J Org Chem; 2009 Nov; 74(22):8806-9. PubMed ID: 19842684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes.
    Leow D
    Org Lett; 2014 Nov; 16(21):5812-5. PubMed ID: 25350690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cannizzaro-type disproportionation of aromatic aldehydes to amides and alcohols by using either a stoichiometric amount or a catalytic amount of lanthanide compounds.
    Zhang L; Wang S; Zhou S; Yang G; Sheng E
    J Org Chem; 2006 Apr; 71(8):3149-53. PubMed ID: 16599612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct oxidative amidation of aldehydes with anilines under mechanical milling conditions.
    Gao J; Wang GW
    J Org Chem; 2008 Apr; 73(7):2955-8. PubMed ID: 18331062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NHC-iron-catalyzed aerobic oxidative aromatic esterification of aldehydes using boronic acids.
    Rosa JN; Reddy RS; Candeias NR; Cal PM; Gois PM
    Org Lett; 2010 Jun; 12(12):2686-9. PubMed ID: 20491432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protecting-group-free synthesis of amines: synthesis of primary amines from aldehydes via reductive amination.
    Dangerfield EM; Plunkett CH; Win-Mason AL; Stocker BL; Timmer MS
    J Org Chem; 2010 Aug; 75(16):5470-7. PubMed ID: 20666449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative amidation and azidation of aldehydes by NHC catalysis.
    De Sarkar S; Studer A
    Org Lett; 2010 May; 12(9):1992-5. PubMed ID: 20359171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical-Induced Metal and Solvent-Free Cross-Coupling Using TBAI-TBHP: Oxidative Amidation of Aldehydes and Alcohols with N-Chloramines via C-H Activation.
    Achar TK; Mal P
    J Org Chem; 2015 Jan; 80(1):666-72. PubMed ID: 25423299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct one-pot synthesis of alpha-siloxy-Weinreb amides from aldehydes.
    Nemoto H; Ma R; Moriguchi H; Kawamura T; Kamiya M; Shibuya M
    J Org Chem; 2007 Dec; 72(25):9850-3. PubMed ID: 17988149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-free oxidative amidation of 2-oxoaldehydes: a facile access to α-ketoamides.
    Mupparapu N; Khan S; Battula S; Kushwaha M; Gupta AP; Ahmed QN; Vishwakarma RA
    Org Lett; 2014 Feb; 16(4):1152-5. PubMed ID: 24490591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary amine formation from reductive amination of carbonyl compounds promoted by Lewis acid using the InCl3/Et3SiH system.
    Lee OY; Law KL; Yang D
    Org Lett; 2009 Aug; 11(15):3302-5. PubMed ID: 19591453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem [4 + 1 + 1] annulation and metal-free aerobic oxidative aromatization: straightforward synthesis of highly substituted phenols from one aldehyde and two ketones.
    Wang M; Fu Z; Feng H; Dong Y; Liu J; Liu Q
    Chem Commun (Camb); 2010 Dec; 46(47):9061-3. PubMed ID: 20976324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic amide bond formation with N-hydroxysuccinimide.
    Yao H; Yamamoto K
    Chem Asian J; 2012 Jun; 7(7):1542-5. PubMed ID: 22511591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.