These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 17655356)
1. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P; Pavasant P; Supaphol P Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356 [TBL] [Abstract][Full Text] [Related]
2. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
3. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Wutticharoenmongkol P; Sanchavanakit N; Pavasant P; Supaphol P Macromol Biosci; 2006 Jan; 6(1):70-7. PubMed ID: 16374772 [TBL] [Abstract][Full Text] [Related]
5. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
6. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
7. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032 [TBL] [Abstract][Full Text] [Related]
8. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
9. Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. Hanagata N; Takemura T; Monkawa A; Ikoma T; Tanaka J J Biomed Mater Res A; 2007 Nov; 83(2):362-71. PubMed ID: 17450577 [TBL] [Abstract][Full Text] [Related]
10. Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. Ogata K; Imazato S; Ehara A; Ebisu S; Kinomoto Y; Nakano T; Umakoshi Y J Biomed Mater Res A; 2005 Feb; 72(2):127-35. PubMed ID: 15625683 [TBL] [Abstract][Full Text] [Related]
11. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
12. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT; Min YK; Lee BT J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865 [TBL] [Abstract][Full Text] [Related]
13. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures. Fuchs S; Jiang X; Gotman I; Makarov C; Schmidt H; Gutmanas EY; Kirkpatrick CJ Acta Biomater; 2010 Aug; 6(8):3169-77. PubMed ID: 20144913 [TBL] [Abstract][Full Text] [Related]
14. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. Turhani D; Weissenböck M; Stein E; Wanschitz F; Ewers R J Oral Maxillofac Surg; 2007 Mar; 65(3):485-93. PubMed ID: 17307597 [TBL] [Abstract][Full Text] [Related]
15. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
16. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Kim HW; Lee EJ; Kim HE; Salih V; Knowles JC Biomaterials; 2005 Jul; 26(21):4395-404. PubMed ID: 15701368 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of biomolecules on the surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering. Mattanavee W; Suwantong O; Puthong S; Bunaprasert T; Hoven VP; Supaphol P ACS Appl Mater Interfaces; 2009 May; 1(5):1076-85. PubMed ID: 20355894 [TBL] [Abstract][Full Text] [Related]
18. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
19. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280 [TBL] [Abstract][Full Text] [Related]
20. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. Yu HS; Jang JH; Kim TI; Lee HH; Kim HW J Biomed Mater Res A; 2009 Mar; 88(3):747-54. PubMed ID: 18357562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]