These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17655474)

  • 1. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo.
    Duty AO; Oest ME; Guldberg RE
    J Biomech Eng; 2007 Aug; 129(4):531-9. PubMed ID: 17655474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro bone growth responds to local mechanical strain in three-dimensional polymer scaffolds.
    Baas E; Kuiper JH; Yang Y; Wood MA; El Haj AJ
    J Biomech; 2010 Mar; 43(4):733-9. PubMed ID: 19942222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue.
    Ravichandran A; Lim J; Chong MSK; Wen F; Liu Y; Pillay YT; Chan JKY; Teoh SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2366-2375. PubMed ID: 27527120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro.
    Cartmell S; Huynh K; Lin A; Nagaraja S; Guldberg R
    J Biomed Mater Res A; 2004 Apr; 69(1):97-104. PubMed ID: 14999756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using dihydropyridine-release strategies to enhance load effects in engineered human bone constructs.
    Wood MA; Yang Y; Thomas PB; Haj AJ
    Tissue Eng; 2006 Sep; 12(9):2489-97. PubMed ID: 16995782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold.
    Shin M; Yoshimoto H; Vacanti JP
    Tissue Eng; 2004; 10(1-2):33-41. PubMed ID: 15009928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization.
    Byers BA; Guldberg RE; García AJ
    Tissue Eng; 2004; 10(11-12):1757-66. PubMed ID: 15684684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y; Kim SH; Kim YH; Kim SH
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering.
    Petrigliano FA; English CS; Barba D; Esmende S; Wu BM; McAllister DR
    Tissue Eng; 2007 Nov; 13(11):2721-31. PubMed ID: 17727336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.
    Brunelli M; Perrault CM; Lacroix D
    J Mech Behav Biomed Mater; 2017 Jul; 71():165-174. PubMed ID: 28342324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells.
    Zhao YH; Yang Q; Xia Q; Peng J; Lu SB; Guo QY; Ma XL; Xu BS; Hu YC; Zhao B; Zhang L; Wang AY; Xu WJ; Miao J; Liu Y
    Chin Med J (Engl); 2013 Aug; 126(16):3130-7. PubMed ID: 23981625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects.
    Byers BA; Guldberg RE; Hutmacher DW; García AJ
    J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor.
    Porter BD; Lin AS; Peister A; Hutmacher D; Guldberg RE
    Biomaterials; 2007 May; 28(15):2525-33. PubMed ID: 17258311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering.
    Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D
    J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone formation on tissue-engineered cartilage constructs in vivo: effects of chondrocyte viability and mechanical loading.
    Case ND; Duty AO; Ratcliffe A; Müller R; Guldberg RE
    Tissue Eng; 2003 Aug; 9(4):587-96. PubMed ID: 13678438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.