BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17655489)

  • 1. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells.
    Buxton AN; Zhu J; Marchant R; West JL; Yoo JU; Johnstone B
    Tissue Eng; 2007 Oct; 13(10):2549-60. PubMed ID: 17655489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels.
    Hwang NS; Varghese S; Zhang Z; Elisseeff J
    Tissue Eng; 2006 Sep; 12(9):2695-706. PubMed ID: 16995803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels.
    Buxton AN; Bahney CS; Yoo JU; Johnstone B
    Tissue Eng Part A; 2011 Feb; 17(3-4):371-80. PubMed ID: 20799905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering of the synovial joint: the role of cell density.
    Troken A; Marion N; Hollister S; Mao J
    Proc Inst Mech Eng H; 2007 Jul; 221(5):429-40. PubMed ID: 17822145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) thermogel.
    Park MH; Yu Y; Moon HJ; Ko du Y; Kim HS; Lee H; Ryu KH; Jeong B
    Adv Healthc Mater; 2014 Nov; 3(11):1782-91. PubMed ID: 24958187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC.
    Spadaccio C; Rainer A; Trombetta M; Vadalá G; Chello M; Covino E; Denaro V; Toyoda Y; Genovese JA
    Ann Biomed Eng; 2009 Jul; 37(7):1376-89. PubMed ID: 19418224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY
    Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds.
    Mohan N; Nair PD; Tabata Y
    J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infiltration of mesenchymal stem cells into PEGDA hydrogel.
    Yourek G; Xin X; Reilly GC; Mao JJ
    Biomed Mater Eng; 2014; 24(5):1803-15. PubMed ID: 25201394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks.
    Salinas CN; Cole BB; Kasko AM; Anseth KS
    Tissue Eng; 2007 May; 13(5):1025-34. PubMed ID: 17417949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells.
    Cai R; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Jun; 52():199-207. PubMed ID: 25818426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model.
    Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH
    Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study.
    Heymer A; Bradica G; Eulert J; Nöth U
    J Tissue Eng Regen Med; 2009 Jul; 3(5):389-97. PubMed ID: 19434664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
    Roberts JJ; Nicodemus GD; Greenwald EC; Bryant SJ
    Clin Orthop Relat Res; 2011 Oct; 469(10):2725-34. PubMed ID: 21347817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.
    Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cell-derived extracellular matrix enables survival and multilineage differentiation within superporous hydrogels.
    Köllmer M; Keskar V; Hauk TG; Collins JM; Russell B; Gemeinhart RA
    Biomacromolecules; 2012 Apr; 13(4):963-73. PubMed ID: 22404228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells.
    Varghese S; Hwang NS; Canver AC; Theprungsirikul P; Lin DW; Elisseeff J
    Matrix Biol; 2008 Jan; 27(1):12-21. PubMed ID: 17689060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition.
    Matsiko A; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):486-97. PubMed ID: 25203687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.