BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17655492)

  • 1. Poly(epsilon-caprolactone) and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury.
    Wong DY; Hollister SJ; Krebsbach PH; Nosrat C
    Tissue Eng; 2007 Oct; 13(10):2515-23. PubMed ID: 17655492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain cortex regeneration affected by scaffold architectures.
    Wong DY; Krebsbach PH; Hollister SJ
    J Neurosurg; 2008 Oct; 109(4):715-22. PubMed ID: 18826360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.
    Rong X; Yuan W; Lu Y; Mo X
    Int J Nanomedicine; 2014; 9():3057-68. PubMed ID: 25028546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone).
    He X; Kawazoe N; Chen G
    Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility of poly (DL-lactide-co-glycolide) microspheres implanted into the brain.
    Emerich DF; Tracy MA; Ward KL; Figueiredo M; Qian R; Henschel C; Bartus RT
    Cell Transplant; 1999; 8(1):47-58. PubMed ID: 10338275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies.
    Mundargi RC; Srirangarajan S; Agnihotri SA; Patil SA; Ravindra S; Setty SB; Aminabhavi TM
    J Control Release; 2007 May; 119(1):59-68. PubMed ID: 17331611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.
    Zheng X; Wang Y; Lan Z; Lyu Y; Feng G; Zhang Y; Tagusari S; Kislauskis E; Robich MP; McCarthy S; Sellke FW; Laham R; Jiang X; Gu WW; Wu T
    J Biomed Nanotechnol; 2014 Jun; 10(6):900-10. PubMed ID: 24749387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects.
    Ruhé PQ; Hedberg-Dirk EL; Padron NT; Spauwen PH; Jansen JA; Mikos AG
    Tissue Eng; 2006 Apr; 12(4):789-800. PubMed ID: 16674292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(D,L-lactic-co-glycolic acid) versus chitosan microspheres.
    Jaganathan KS; Rao YU; Singh P; Prabakaran D; Gupta S; Jain A; Vyas SP
    Int J Pharm; 2005 Apr; 294(1-2):23-32. PubMed ID: 15814228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; Jeon O; Kim BS
    Tissue Eng; 2005; 11(3-4):438-47. PubMed ID: 15869422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites.
    Ruhé PQ; Hedberg EL; Padron NT; Spauwen PH; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2005 Sep; 74(4):533-44. PubMed ID: 16041795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCL microparticle-dispersed PLGA solution as a potential injectable urethral bulking agent.
    Oh SH; Lee JY; Ghil SH; Lee SS; Yuk SH; Lee JH
    Biomaterials; 2006 Mar; 27(9):1936-44. PubMed ID: 16221494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles.
    Félix Lanao RP; Leeuwenburgh SC; Wolke JG; Jansen JA
    Biomaterials; 2011 Dec; 32(34):8839-47. PubMed ID: 21871661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration.
    Cho WJ; Kim JH; Oh SH; Nam HH; Kim JM; Lee JH
    J Biomed Mater Res A; 2009 Nov; 91(2):400-7. PubMed ID: 18980200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of biodegradable microspheres injected into rat brain.
    Nicholas AP; McInnis C; Gupta KB; Snow WW; Love DF; Mason DW; Ferrell TM; Staas JK; Tice TR
    Neurosci Lett; 2002 Apr; 323(2):85-8. PubMed ID: 11950499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles.
    Dailey LA; Wittmar M; Kissel T
    J Control Release; 2005 Jan; 101(1-3):137-49. PubMed ID: 15588900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The behavior of neural stem cells on biodegradable synthetic polymers.
    Bhang SH; Lim JS; Choi CY; Kwon YK; Kim BS
    J Biomater Sci Polym Ed; 2007; 18(2):223-39. PubMed ID: 17323855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.