These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 17655676)

  • 1. Quantification of shock-induced microscopic virtual electrodes assessed by subcellular resolution optical potential mapping in guinea pig papillary muscle.
    Windisch H; Platzer D; Bilgici E
    J Cardiovasc Electrophysiol; 2007 Sep; 18(10):1086-94. PubMed ID: 17655676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
    Sharifov OF; Ideker RE; Fast VG
    Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations.
    Sharifov OF; Fast VG
    Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure related modification of the shock induced excitation in Guinea pig papillary muscle.
    Windisch H; Platzer D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():164-6. PubMed ID: 18001914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Arrhythmic activity of the papillary muscle induced by high frequency stimulation: n1 rhythms,transition forms and hysteresis].
    González H; Torres A; Lerma C; Arriola G; Pastelín G; Arce H
    Arch Cardiol Mex; 2004; 74(1):11-24. PubMed ID: 15125262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual sources and sinks during extracellular field shocks in cardiac cell cultures: effects of source-sink interactions between adjacent tissue boundaries.
    Kondratyev AA; Didon JP; Hinnen-Oberer H; Lemay M; Kucera JP; Kleber AG
    Circ Arrhythm Electrophysiol; 2012 Apr; 5(2):391-9. PubMed ID: 22387879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition of field-induced transmembrane potential responses of single cardiac cells.
    Sharma V; Lu SN; Tung L
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1031-7. PubMed ID: 12214875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation.
    Sharma V; Tung L
    J Physiol; 2002 Jul; 542(Pt 2):477-92. PubMed ID: 12122146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring activation patterns of the heart at a microscopic size scale with thin-film sensors.
    Hofer E; Urban G; Spach MS; Schafferhofer I; Mohr G; Platzer D
    Am J Physiol; 1994 May; 266(5 Pt 2):H2136-45. PubMed ID: 8203613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
    Frey U; Egert U; Heer F; Hafizovic S; Hierlemann A
    Biosens Bioelectron; 2009 Mar; 24(7):2191-8. PubMed ID: 19157842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial changes in the transmembrane potential during extracellular electric stimulation.
    Zhou X; Knisley SB; Smith WM; Rollins D; Pollard AE; Ideker RE
    Circ Res; 1998 Nov; 83(10):1003-14. PubMed ID: 9815148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new floating sensor array to detect electric near fields of beating heart preparations.
    Hofer E; Keplinger F; Thurner T; Wiener T; Sanchez-Quintana D; Climent V; Plank G
    Biosens Bioelectron; 2006 Jun; 21(12):2232-9. PubMed ID: 16384696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast optical monitoring of microscopic excitation patterns in cardiac muscle.
    Müller W; Windisch H; Tritthart HA
    Biophys J; 1989 Sep; 56(3):623-9. PubMed ID: 2790142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of levosimendan on myocardial function in ropivacaine toxicity in isolated guinea pig heart preparations.
    Stehr SN; Christ T; Rasche B; Rasche S; Wettwer E; Deussen A; Ravens U; Koch T; Hübler M
    Anesth Analg; 2007 Sep; 105(3):641-7. PubMed ID: 17717217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs.
    Jeng FC; Abbas PJ; Hu N; Miller CA; Nourski KV; Robinson BK
    Hear Res; 2009 Jan; 247(1):47-59. PubMed ID: 19015019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.