These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 17655839)

  • 1. Differential control of cell affinity required for progression and refinement of cell boundary during Drosophila leg segmentation.
    Sakurai KT; Kojima T; Aigaki T; Hayashi S
    Dev Biol; 2007 Sep; 309(1):126-36. PubMed ID: 17655839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundary formation in the Drosophila wing: functional dissection of Capricious and Tartan.
    Milán M; Pérez L; Cohen SM
    Dev Dyn; 2005 Jul; 233(3):804-10. PubMed ID: 15830355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate determination of Drosophila leg distal regions by trachealess and tango through repression and stimulation, respectively, of Bar homeobox gene expression in the future pretarsus and tarsus.
    Tajiri R; Tsuji T; Ueda R; Saigo K; Kojima T
    Dev Biol; 2007 Mar; 303(2):461-73. PubMed ID: 17187773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The LRR proteins capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing.
    Milán M; Weihe U; Pérez L; Cohen SM
    Cell; 2001 Sep; 106(6):785-94. PubMed ID: 11572783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Drosophila retinal epithelial integrity by the adhesion proteins capricious and tartan.
    Mao Y; Kerr M; Freeman M
    PLoS One; 2008 Mar; 3(3):e1827. PubMed ID: 18350163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg regeneration in Drosophila abridges the normal developmental program.
    Bosch M; Bishop SA; Baguña J; Couso JP
    Int J Dev Biol; 2010; 54(8-9):1241-50. PubMed ID: 20563988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and specification of distal leg segments in Drosophila by dual Bar homeobox genes, BarH1 and BarH2.
    Kojima T; Sato M; Saigo K
    Development; 2000 Feb; 127(4):769-78. PubMed ID: 10648235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of expression of Vg and establishment of the dorsoventral compartment boundary in the wing imaginal disc by Suppressor of Hairless.
    Koelzer S; Klein T
    Dev Biol; 2006 Jan; 289(1):77-90. PubMed ID: 16307735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary.
    Michel M; Aliee M; Rudolf K; Bialas L; Jülicher F; Dahmann C
    PLoS One; 2016; 11(8):e0161668. PubMed ID: 27552097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different temporal requirements for tartan and wingless in the formation of contractile interfaces at compartmental boundaries.
    Sharrock TE; Evans J; Blanchard GB; Sanson B
    Development; 2022 Nov; 149(21):. PubMed ID: 36178136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target recognition at the tips of postsynaptic filopodia: accumulation and function of Capricious.
    Kohsaka H; Nose A
    Development; 2009 Apr; 136(7):1127-35. PubMed ID: 19270171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis.
    Krause C; Wolf C; Hemphälä J; Samakovlis C; Schuh R
    Dev Biol; 2006 Aug; 296(1):253-64. PubMed ID: 16764850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila.
    Ly D; Resch E; Ordiway G; DiNardo S
    Dev Biol; 2017 Sep; 429(1):165-176. PubMed ID: 28689737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc.
    González A; Chaouiya C; Thieffry D
    Bioinformatics; 2008 Aug; 24(16):i234-40. PubMed ID: 18689831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of gene expression in the distal region of the Drosophila leg by the Hox11 homolog, C15.
    Campbell G
    Dev Biol; 2005 Feb; 278(2):607-18. PubMed ID: 15680373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirements of Lim1, a Drosophila LIM-homeobox gene, for normal leg and antennal development.
    Tsuji T; Sato A; Hiratani I; Taira M; Saigo K; Kojima T
    Development; 2000 Oct; 127(20):4315-23. PubMed ID: 11003832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and genetic characterization of the Drosophila tartan gene.
    Chang Z; Price BD; Bockheim S; Boedigheimer MJ; Smith R; Laughon A
    Dev Biol; 1993 Dec; 160(2):315-32. PubMed ID: 8253267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional stability of the aristaless gene in appendage tip formation during evolution.
    Beermann A; Schröder R
    Dev Genes Evol; 2004 Jun; 214(6):303-8. PubMed ID: 15148606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AP-2 transcription factor is required for joint formation and cell survival in Drosophila leg development.
    Kerber B; Monge I; Mueller M; Mitchell PJ; Cohen SM
    Development; 2001 Apr; 128(8):1231-8. PubMed ID: 11262225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs.
    McClure KD; Schubiger G
    Development; 2005 Nov; 132(22):5033-42. PubMed ID: 16236766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.