These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17655852)

  • 41. On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate.
    Kasra M; Grynpas MD
    J Biomech; 2007; 40(13):2898-903. PubMed ID: 17448478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of the in vivo adaptive response to mechanical loading.
    Saxon LK; Lanyon LE
    Methods Mol Biol; 2008; 455():307-22. PubMed ID: 18463827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro mechanical and cellular responses of neonatal mouse bones to loading using a novel micromechanical-testing device.
    Kunnel JG; Gilbert JL; Stern PH
    Calcif Tissue Int; 2002 Dec; 71(6):499-507. PubMed ID: 12232683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent "error" loads.
    Homminga J; Van-Rietbergen B; Lochmüller EM; Weinans H; Eckstein F; Huiskes R
    Bone; 2004 Mar; 34(3):510-6. PubMed ID: 15003798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of low magnitude and high frequency mechanical stimuli on defects healing in cranial bones.
    Omar H; Shen G; Jones AS; Zoellner H; Petocz P; Darendeliler MA
    J Oral Maxillofac Surg; 2008 Jun; 66(6):1104-11. PubMed ID: 18486774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading.
    Ozcivici E; Zhang W; Donahue LR; Judex S
    Bone; 2014 Jul; 64():25-32. PubMed ID: 24698783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anabolism. Low mechanical signals strengthen long bones.
    Rubin C; Turner AS; Bain S; Mallinckrodt C; McLeod K
    Nature; 2001 Aug; 412(6847):603-4. PubMed ID: 11493908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations.
    Xie L; Rubin C; Judex S
    J Appl Physiol (1985); 2008 Apr; 104(4):1056-62. PubMed ID: 18258802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An in vivo model for investigations of mechanical signal transduction in trabecular bone.
    Moalli MR; Caldwell NJ; Patil PV; Goldstein SA
    J Bone Miner Res; 2000 Jul; 15(7):1346-53. PubMed ID: 10893683
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders.
    Endres S; Kratz M; Wunsch S; Jones DB
    J Musculoskelet Neuronal Interact; 2009; 9(3):173-83. PubMed ID: 19724152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis.
    Hong J; Cabe GD; Tedrow JR; Hipp JA; Snyder BD
    J Orthop Res; 2004 May; 22(3):479-86. PubMed ID: 15099624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Partial weight bearing does not prevent musculoskeletal losses associated with disuse.
    Swift JM; Lima F; Macias BR; Allen MR; Greene ES; Shirazi-Fard Y; Kupke JS; Hogan HA; Bloomfield SA
    Med Sci Sports Exerc; 2013 Nov; 45(11):2052-60. PubMed ID: 23657172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in trabecular bone turnover and bone marrow cell development in tail-suspended mice.
    Sakai A; Nakamura T
    J Musculoskelet Neuronal Interact; 2001 Jun; 1(4):387-92. PubMed ID: 15758489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.
    Ozcivici E; Judex S
    Bone; 2014 Oct; 67():122-9. PubMed ID: 24857858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.