BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17655916)

  • 1. Fluorine geochemistry in bedrock groundwater of South Korea.
    Chae GT; Yun ST; Mayer B; Kim KH; Kim SY; Kwon JS; Kim K; Koh YK
    Sci Total Environ; 2007 Oct; 385(1-3):272-83. PubMed ID: 17655916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula.
    Kim K; Jeong GY
    Chemosphere; 2005 Mar; 58(10):1399-408. PubMed ID: 15686758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan.
    Rafique T; Naseem S; Usmani TH; Bashir E; Khan FA; Bhanger MI
    J Hazard Mater; 2009 Nov; 171(1-3):424-30. PubMed ID: 19586721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical controls on fluoriferous groundwaters of the Pliocene and the more recent aquifers: the case of Aigion region, Greece.
    Katsanou K; Siavalas G; Lambrakis N
    J Contam Hydrol; 2013 Dec; 155():55-68. PubMed ID: 24140858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India.
    Singh CK; Rina K; Singh RP; Shashtri S; Kamal V; Mukherjee S
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):152-8. PubMed ID: 21258778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China.
    Su C; Wang Y; Xie X; Zhu Y
    Environ Sci Process Impacts; 2015 Apr; 17(4):791-801. PubMed ID: 25743227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater geochemistry in the Alisadr, Hamadan, western Iran.
    Jalali M
    Environ Monit Assess; 2010 Jul; 166(1-4):359-69. PubMed ID: 19496011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India.
    Singh CK; Mukherjee S
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2668-78. PubMed ID: 25201693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.
    Berger T; Mathurin FA; Drake H; Åström ME
    Sci Total Environ; 2016 Nov; 569-570():948-960. PubMed ID: 27450253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of groundwater quality with respect to fluoride.
    Salve PR; Maurya A; Kumbhare PS; Ramteke DS; Wate SR
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):289-93. PubMed ID: 18563282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China.
    Li C; Gao X; Wang Y
    Sci Total Environ; 2015 Mar; 508():155-65. PubMed ID: 25478652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India.
    Reddy AG; Reddy DV; Rao PN; Prasad KM
    Environ Monit Assess; 2010 Dec; 171(1-4):561-77. PubMed ID: 20069449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan.
    Naseem S; Rafique T; Bashir E; Bhanger MI; Laghari A; Usmani TH
    Chemosphere; 2010 Mar; 78(11):1313-21. PubMed ID: 20149412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous fluoride concentration in groundwater - is it natural or pollution? A stable isotope approach.
    Marimon MP; Knöller K; Roisenberg A
    Isotopes Environ Health Stud; 2007 Jun; 43(2):165-75. PubMed ID: 17558753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric versus lithogenic contribution to the composition of first- and second-order stream waters in Seoul and its vicinity.
    Chae GT; Yun ST; Kim KH; Lee PK; Choi BY
    Environ Int; 2004 Mar; 30(1):73-85. PubMed ID: 14664867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relations of As concentrations among groundwater, soil, and bedrock in Chungnam, Korea: implications for As mobilization in groundwater according to the As-hosting mineral change.
    Kim K; Kim SH; Jeong GY; Kim RH
    J Hazard Mater; 2012 Jan; 199-200():25-35. PubMed ID: 22119300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Content and distribution of arsenic in soils, sediments and groundwater environments of the southern Pampa region, Argentina.
    Blanco Mdel C; Paoloni JD; Morrás HJ; Fiorentino CE; Sequeira M
    Environ Toxicol; 2006 Dec; 21(6):561-74. PubMed ID: 17091500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.