BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17656142)

  • 1. Inoculation of Chlamydia pneumoniae or Chlamydia trachomatis with ligands that inhibit attachment to host cells reduces infectivity in the mouse model of lung infection: implication for anti-adhesive therapy.
    Kuo CC; Lee A; Jiang SJ; Yaraei K; Campbell LA
    Microbes Infect; 2007 Jul; 9(9):1139-41. PubMed ID: 17656142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia pneumoniae uses the mannose 6-phosphate/insulin-like growth factor 2 receptor for infection of endothelial cells.
    Puolakkainen M; Kuo CC; Campbell LA
    Infect Immun; 2005 Aug; 73(8):4620-5. PubMed ID: 16040974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage of the N-linked oligosaccharide from the surfaces of Chlamydia species affects infectivity in the mouse model of lung infection.
    Campbell LA; Lee A; Kuo CC
    Infect Immun; 2006 May; 74(5):3027-9. PubMed ID: 16622244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells.
    Kuo C; Takahashi N; Swanson AF; Ozeki Y; Hakomori S
    J Clin Invest; 1996 Dec; 98(12):2813-8. PubMed ID: 8981929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol.
    Brown WJ; Skeiky YA; Probst P; Rockey DD
    Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth.
    Ishida K; Matsuo J; Yamamoto Y; Yamaguchi H
    BMC Microbiol; 2014 Dec; 14():330. PubMed ID: 25528659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of heparan sulfate-like glycosaminoglycans on the infectivity of Chlamydia pneumoniae in HL cells varies between strains.
    Yan Y; Silvennoinen-Kassinen S; Leinonen M; Saikku P
    Microbes Infect; 2006 Mar; 8(3):866-72. PubMed ID: 16500132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct.
    Rey-Ladino J; Koochesfahani KM; Zaharik ML; Shen C; Brunham RC
    Infect Immun; 2005 Mar; 73(3):1568-77. PubMed ID: 15731055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis.
    Swanson AF; Ezekowitz RA; Lee A; Kuo CC
    Infect Immun; 1998 Apr; 66(4):1607-12. PubMed ID: 9529088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of the N-linked oligosaccharide from the surfaces of Chlamydia species affects attachment and infectivity of the organisms in human epithelial and endothelial cells.
    Kuo CC; Lee A; Campbell LA
    Infect Immun; 2004 Nov; 72(11):6699-701. PubMed ID: 15501806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydial persistence: beyond the biphasic paradigm.
    Hogan RJ; Mathews SA; Mukhopadhyay S; Summersgill JT; Timms P
    Infect Immun; 2004 Apr; 72(4):1843-55. PubMed ID: 15039303
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding of Galanthus nivalis lectin to Chlamydia trachomatis and inhibition of in vitro infection.
    Amin K; Beillevaire D; Mahmoud E; Hammar L; Mårdh PA; Fröman G
    APMIS; 1995 Oct; 103(10):714-20. PubMed ID: 8534430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Chlamydia trachomatis and Chlamydia pneumoniae in paediatric respiratory infections.
    Webley WC; Tilahun Y; Lay K; Patel K; Stuart ES; Andrzejewski C; Salva PS
    Eur Respir J; 2009 Feb; 33(2):360-7. PubMed ID: 19010996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pathology of human chlamydia infections].
    Theegarten D
    Pneumologie; 2004 Apr; 58(4):280-2. PubMed ID: 15098146
    [No Abstract]   [Full Text] [Related]  

  • 16. Mannose-receptor positive and negative mouse macrophages differ in their susceptibility to infection by Chlamydia species.
    Kuo CC; Puolakkainen M; Lin TM; Witte M; Campbell LA
    Microb Pathog; 2002 Jan; 32(1):43-8. PubMed ID: 11782120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type III secretion system in Chlamydia species: identified members and candidates.
    Subtil A; Blocker A; Dautry-Varsat A
    Microbes Infect; 2000 Apr; 2(4):367-9. PubMed ID: 10817638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomes of Chlamydia pneumoniae and C. trachomatis.
    Kalman S; Mitchell W; Marathe R; Lammel C; Fan J; Hyman RW; Olinger L; Grimwood J; Davis RW; Stephens RS
    Nat Genet; 1999 Apr; 21(4):385-9. PubMed ID: 10192388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection.
    Yang X; Brunham RC
    J Immunol; 1998 Aug; 161(3):1439-46. PubMed ID: 9686609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry.
    Stallmann S; Hegemann JH
    Cell Microbiol; 2016 May; 18(5):761-75. PubMed ID: 26597572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.