These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17656574)

  • 1. Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly.
    Gong H; Shen Y; Rose GD
    Protein Sci; 2007 Aug; 16(8):1515-21. PubMed ID: 17656574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building native protein conformation from highly approximate backbone torsion angles.
    Gong H; Fleming PJ; Rose GD
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16227-32. PubMed ID: 16251268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology.
    Robustelli P; Cavalli A; Dobson CM; Vendruscolo M; Salvatella X
    J Phys Chem B; 2009 Jun; 113(22):7890-6. PubMed ID: 19425536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A; Skolnick J
    Proteins; 1998 Sep; 32(4):475-94. PubMed ID: 9726417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structure determines protein topology.
    Fleming PJ; Gong H; Rose GD
    Protein Sci; 2006 Aug; 15(8):1829-34. PubMed ID: 16823044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW; Kelly GP; Whitford D
    J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
    Robustelli P; Kohlhoff K; Cavalli A; Vendruscolo M
    Structure; 2010 Aug; 18(8):923-33. PubMed ID: 20696393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backbone structure confirmation and side chain conformation refinement of a bradykinin mimic BKM-824 by comparing calculated (1)H, (13)C and (19)F chemical shifts with experiment.
    Wang B; Miskolizie M; Kotovych G; Pulay P
    J Biomol Struct Dyn; 2002 Aug; 20(1):71-80. PubMed ID: 12144353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology modeling by the ICM method.
    Cardozo T; Totrov M; Abagyan R
    Proteins; 1995 Nov; 23(3):403-14. PubMed ID: 8710833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origins of protein secondary structure. Effects of packing density and hydrogen bonding studied by a fast conformational search.
    Hunt NG; Gregoret LM; Cohen FE
    J Mol Biol; 1994 Aug; 241(2):214-25. PubMed ID: 8057361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information.
    Hudáky P; Perczel A
    J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation and nuclear magnetic resonance studies of the terminal glucotriose unit found in the oligosaccharide of glycoprotein precursors.
    Höög C; Widmalm G
    Arch Biochem Biophys; 2000 May; 377(1):163-70. PubMed ID: 10775456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of protein folding with a small number of distance restraints.
    Sikorski A; Kolinski A; Skolnick J
    Acta Biochim Pol; 2002; 49(3):683-92. PubMed ID: 12422238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation.
    Ulmschneider JP; Jorgensen WL
    J Am Chem Soc; 2004 Feb; 126(6):1849-57. PubMed ID: 14871118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.