BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17656587)

  • 1. Structure in an extreme environment: NMR at high salt.
    Binbuga B; Boroujerdi AF; Young JK
    Protein Sci; 2007 Aug; 16(8):1783-7. PubMed ID: 17656587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR-derived folate-bound structure of dihydrofolate reductase 1 from the halophile Haloferax volcanii.
    Boroujerdi AF; Young JK
    Biopolymers; 2009 Feb; 91(2):140-4. PubMed ID: 18825778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases.
    Wright DB; Banks DD; Lohman JR; Hilsenbeck JL; Gloss LM
    J Mol Biol; 2002 Oct; 323(2):327-44. PubMed ID: 12381324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii.
    Pieper U; Kapadia G; Mevarech M; Herzberg O
    Structure; 1998 Jan; 6(1):75-88. PubMed ID: 9493269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR assignments of the binary hvDHFR1:folate complex.
    Boroujerdi AF; Binbuga B; Young JK
    Biomol NMR Assign; 2007 Jul; 1(1):139-41. PubMed ID: 19636849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength.
    Gloss LM; Topping TB; Binder AK; Lohman JR
    J Mol Biol; 2008 Mar; 376(5):1451-62. PubMed ID: 18207162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H, 13C and 15N backbone and side chain resonance assignments of Haloferax volcanii DHFR1.
    Binbuga B; Young JK
    J Biomol NMR; 2005 Dec; 33(4):281. PubMed ID: 16341756
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of the conformation of trimethoprim in the binding pocket of bovine dihydrofolate reductase from a STD-NMR intensity-restrained CORCEMA-ST optimization.
    Jayalakshmi V; Krishna NR
    J Am Chem Soc; 2005 Oct; 127(40):14080-4. PubMed ID: 16201830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii.
    Madern D; Camacho M; Rodríguez-Arnedo A; Bonete MJ; Zaccai G
    Extremophiles; 2004 Oct; 8(5):377-84. PubMed ID: 15221656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives.
    Haque RU; Paradisi F; Allers T
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1371-1382. PubMed ID: 31863144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs.
    Kastritis PL; Papandreou NC; Hamodrakas SJ
    Int J Biol Macromol; 2007 Oct; 41(4):447-53. PubMed ID: 17675150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli.
    Connaris H; Chaudhuri JB; Danson MJ; Hough DW
    Biotechnol Bioeng; 1999 Jul; 64(1):38-45. PubMed ID: 10397837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative protein structure modeling. Introduction and practical examples with modeller.
    Sánchez R; Sali A
    Methods Mol Biol; 2000; 143():97-129. PubMed ID: 11084904
    [No Abstract]   [Full Text] [Related]  

  • 14. Envisioning the loop movements and rotation of the two subdomains of dihydrofolate reductase by elastic normal mode analysis.
    Luo J; Bruice TC
    J Biomol Struct Dyn; 2009 Dec; 27(3):245-58. PubMed ID: 19795909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1.
    Miyashita Y; Ohmae E; Nakasone K; Katayanagi K
    Extremophiles; 2015 Mar; 19(2):479-93. PubMed ID: 25617115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the ubiquitin-like small archaeal modifier protein 2 from Haloferax volcanii.
    Li Y; Maciejewski MW; Martin J; Jin K; Zhang Y; Maupin-Furlow JA; Hao B
    Protein Sci; 2013 Sep; 22(9):1206-17. PubMed ID: 23821306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A perspective on enzyme catalysis.
    Benkovic SJ; Hammes-Schiffer S
    Science; 2003 Aug; 301(5637):1196-202. PubMed ID: 12947189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G.
    Bracken CD; Neighbor AM; Lamlenn KK; Thomas GC; Schubert HL; Whitby FG; Howard BR
    BMC Struct Biol; 2011 May; 11():23. PubMed ID: 21569248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.
    Dams T; Auerbach G; Bader G; Jacob U; Ploom T; Huber R; Jaenicke R
    J Mol Biol; 2000 Mar; 297(3):659-72. PubMed ID: 10731419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different glycosyltransferases are involved in lipid glycosylation and protein N-glycosylation in the halophilic archaeon Haloferax volcanii.
    Naparstek S; Vinagradov E; Eichler J
    Arch Microbiol; 2010 Jul; 192(7):581-4. PubMed ID: 20458469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.