These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17656587)

  • 41. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.
    Lorantfy B; Seyer B; Herwig C
    N Biotechnol; 2014 Jan; 31(1):80-9. PubMed ID: 23994053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.
    Lenton S; Walsh DL; Rhys NH; Soper AK; Dougan L
    Phys Chem Chem Phys; 2016 Jul; 18(27):18054-62. PubMed ID: 27327567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme.
    Karan R; Mathew S; Muhammad R; Bautista DB; Vogler M; Eppinger J; Oliva R; Cavallo L; Arold ST; Rueping M
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33081237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular evolution steered structural adaptations in the DNA polymerase III α subunit of halophilic bacterium Salinibacter ruber.
    Sengupta A; Das K; Jha N; Akhter Y; Kumar A
    Extremophiles; 2023 Jul; 27(2):20. PubMed ID: 37481762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation.
    Sinha R; Khare SK
    Front Microbiol; 2014; 5():165. PubMed ID: 24782853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pushing the boundaries of molecular replacement with maximum likelihood.
    Read RJ
    Acta Crystallogr D Biol Crystallogr; 2001 Oct; 57(Pt 10):1373-82. PubMed ID: 11567148
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preface to the proceedings of Halophiles 2013.
    Papke RT
    Front Microbiol; 2015; 6():341. PubMed ID: 25954264
    [No Abstract]   [Full Text] [Related]  

  • 48. Prevalence and mechanism of synergistic carboxylate-cation-water interactions in halophilic proteins.
    Geraili Daronkola H; Vila Verde A
    Biophys J; 2023 Jun; 122(12):2577-2589. PubMed ID: 37179455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Paramagnetic Relaxation Enhancement for Detecting and Characterizing Self-Associations of Intrinsically Disordered Proteins.
    Johnson CN; Libich DS
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1.
    Miyashita Y; Ohmae E; Ikura T; Nakasone K; Katayanagi K
    Extremophiles; 2017 May; 21(3):591-602. PubMed ID: 28349498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1.
    Miyashita Y; Ohmae E; Nakasone K; Katayanagi K
    Extremophiles; 2015 Mar; 19(2):479-93. PubMed ID: 25617115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein attributes contribute to halo-stability, bioinformatics approach.
    Ebrahimie E; Ebrahimi M; Sarvestani NR; Ebrahimi M
    Saline Syst; 2011 May; 7(1):1. PubMed ID: 21592393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases.
    Wright DB; Banks DD; Lohman JR; Hilsenbeck JL; Gloss LM
    J Mol Biol; 2002 Oct; 323(2):327-44. PubMed ID: 12381324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii.
    Pieper U; Kapadia G; Mevarech M; Herzberg O
    Structure; 1998 Jan; 6(1):75-88. PubMed ID: 9493269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives.
    Haque RU; Paradisi F; Allers T
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1371-1382. PubMed ID: 31863144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A perspective on enzyme catalysis.
    Benkovic SJ; Hammes-Schiffer S
    Science; 2003 Aug; 301(5637):1196-202. PubMed ID: 12947189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure in an extreme environment: NMR at high salt.
    Binbuga B; Boroujerdi AF; Young JK
    Protein Sci; 2007 Aug; 16(8):1783-7. PubMed ID: 17656587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NMR-derived folate-bound structure of dihydrofolate reductase 1 from the halophile Haloferax volcanii.
    Boroujerdi AF; Young JK
    Biopolymers; 2009 Feb; 91(2):140-4. PubMed ID: 18825778
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.