These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17657350)

  • 21. The evolution of trade-offs: geographic variation in call duration and flight ability in the sand cricket, Gryllus firmus.
    Roff DA; Crnokrak P; Fairbairn DJ
    J Evol Biol; 2003 Jul; 16(4):744-53. PubMed ID: 14632237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of the circadian clock gene period by RNA interference in nymphal crickets Gryllus bimaculatus.
    Moriyama Y; Sakamoto T; Matsumoto A; Noji S; Tomioka K
    J Insect Physiol; 2009 Feb; 55(2):183-7. PubMed ID: 19059262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying multivariate plasticity: genetic variation in resource acquisition drives plasticity in resource allocation to components of life history.
    Robinson MR; Beckerman AP
    Ecol Lett; 2013 Mar; 16(3):281-90. PubMed ID: 23301600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue and stage-specific juvenile hormone esterase (JHE) and epoxide hydrolase (JHEH) enzyme activities and Jhe transcript abundance in lines of the cricket Gryllus assimilis artificially selected for plasma JHE activity: implications for JHE microevolution.
    Anand A; Crone EJ; Zera AJ
    J Insect Physiol; 2008 Sep; 54(9):1323-31. PubMed ID: 18634793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental changes in the levels and redox potentials of main hemolymph thiols/disulfides in the Jamaican field cricket Gryllus assimilis.
    Sadowska-Bartosz I; Furmaniak P; Bieszczad-Bedrejczuk E; Bartosz G; Głowacki R
    Acta Biochim Pol; 2017; 64(3):503-506. PubMed ID: 28746421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative wing variation in inbred and outbred lines of Drosophila melanogaster.
    Curtsinger JW
    J Hered; 1986; 77(4):267-71. PubMed ID: 3093563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolutionary genetics of acquisition and allocation in the wing dimorphic cricket, Gryllus firmus.
    King EG; Roff DA; Fairbairn DJ
    Evolution; 2011 Aug; 65(8):2273-85. PubMed ID: 21790574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic plasticity and the evolution of trade-offs: the quantitative genetics of resource allocation in the wing dimorphic cricket, Gryllus firmus.
    Roff DA; Gélinas MB
    J Evol Biol; 2003 Jan; 16(1):55-63. PubMed ID: 14635880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus.
    Clark RM; Zera AJ; Behmer ST
    J Exp Biol; 2015 Jan; 218(Pt 2):298-308. PubMed ID: 25524979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The common quantitative genetic basis of wing morphology and diapause occurrence in the cricket Gryllus veletis.
    Bégin M; Roff DA
    Heredity (Edinb); 2002 Dec; 89(6):473-9. PubMed ID: 12466991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket.
    Matsuura T; Kanou M
    J Insect Physiol; 2003 Sep; 49(9):805-15. PubMed ID: 16256682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning, characterization, and expression analysis of an ecdysone receptor homolog in Teleogryllus emma (Orthoptera: Gryllidae).
    He H; Xi G; Lu X
    J Insect Sci; 2015; 15(1):. PubMed ID: 25797799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sexual selection in the cricket Gryllus bimaculatus: no good genes?
    Rodríguez-Muñoz R; Bretman A; Hadfield JD; Tregenza T
    Genetica; 2008 Mar; 132(3):287-94. PubMed ID: 17647083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trade-off acquisition and allocation in Gryllus firmus: a test of the Y model.
    King EG; Roff DA; Fairbairn DJ
    J Evol Biol; 2011 Feb; 24(2):256-64. PubMed ID: 21044204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary endocrinology of juvenile hormone esterase in Gryllus assimilis: direct and correlated responses to selection.
    Zera AJ; Zhang C
    Genetics; 1995 Nov; 141(3):1125-34. PubMed ID: 8582618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph.
    Nakamura T; Mito T; Miyawaki K; Ohuchi H; Noji S
    Dev Biol; 2008 Jul; 319(1):46-55. PubMed ID: 18486122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.
    Klingenberg CP; Debat V; Roff DA
    Evolution; 2010 Oct; 64(10):2935-51. PubMed ID: 20482613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection on dispersal drives evolution of metabolic capacities for energy production in female wing-polymorphic sand field crickets, Gryllus firmus.
    Treidel LA; Quintanilla Ramirez GS; Chung DJ; Menze MA; Vázquez-Medina JP; Williams CM
    J Evol Biol; 2022 Apr; 35(4):599-609. PubMed ID: 35255175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production.
    Oppert B; Perkin LC; Lorenzen M; Dossey AT
    Sci Rep; 2020 Feb; 10(1):3471. PubMed ID: 32103047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inbreeding depression in the competitive fertilization success of male crickets.
    Simmons LW
    J Evol Biol; 2011 Feb; 24(2):415-21. PubMed ID: 21091574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.