BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 17657543)

  • 41. Neural coding of time-varying interaural time differences and time-varying amplitude in the inferior colliculus.
    Zuk N; Delgutte B
    J Neurophysiol; 2017 Jul; 118(1):544-563. PubMed ID: 28381487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants.
    Smith ZM; Delgutte B
    J Neurophysiol; 2008 May; 99(5):2390-407. PubMed ID: 18287556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cortical representation of interaural time difference in congenital deafness.
    Tillein J; Hubka P; Syed E; Hartmann R; Engel AK; Kral A
    Cereb Cortex; 2010 Feb; 20(2):492-506. PubMed ID: 19906808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cochlear microphonic measurements of interaural time differences in the chick.
    Hyson RL; Overholt EM; Lippe WR
    Hear Res; 1994 Dec; 81(1-2):109-18. PubMed ID: 7737918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners.
    Lu T; Litovsky R; Zeng FG
    J Acoust Soc Am; 2010 Mar; 127(3):1479-90. PubMed ID: 20329848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaural time sensitivity dominated by cochlea-induced envelope patterns.
    Joris PX
    J Neurosci; 2003 Jul; 23(15):6345-50. PubMed ID: 12867519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural ITD Sensitivity and Temporal Coding with Cochlear Implants in an Animal Model of Early-Onset Deafness.
    Chung Y; Buechel BD; Sunwoo W; Wagner JD; Delgutte B
    J Assoc Res Otolaryngol; 2019 Feb; 20(1):37-56. PubMed ID: 30623319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study.
    Wang L; Devore S; Delgutte B; Colburn HS
    J Neurophysiol; 2014 Jan; 111(1):164-81. PubMed ID: 24155013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness.
    Hancock KE; Noel V; Ryugo DK; Delgutte B
    J Neurosci; 2010 Oct; 30(42):14068-79. PubMed ID: 20962228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus.
    Mc Laughlin M; Van de Sande B; van der Heijden M; Joris PX
    J Neurophysiol; 2007 Nov; 98(5):2566-79. PubMed ID: 17881484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High frequency sensitivity to interaural onset time differences in the bat inferior colliculus.
    Haqqee Z; Valdizón-Rodríguez R; Faure PA
    Hear Res; 2021 Feb; 400():108133. PubMed ID: 33340969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaural time processing when stimulus bandwidth differs at the two ears.
    Brown CA; Yost WA
    Adv Exp Med Biol; 2013; 787():247-54. PubMed ID: 23716230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Channel Envelope Synchrony on Interaural Time Difference Sensitivity in Bilateral Cochlear Implant Listeners.
    Francart T; Lenssen A; Büchner A; Lenarz T; Wouters J
    Ear Hear; 2015; 36(4):e199-206. PubMed ID: 25738574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants.
    Hu H; Dietz M
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26631108
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimated cochlear delays in low best-frequency neurons in the barn owl cannot explain coding of interaural time difference.
    Singheiser M; Fischer BJ; Wagner H
    J Neurophysiol; 2010 Oct; 104(4):1946-54. PubMed ID: 20702736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of interaural correlation by neurons in the superior olivary complex, inferior colliculus and auditory cortex of the unanesthetized rabbit.
    Coffey CS; Ebert CS; Marshall AF; Skaggs JD; Falk SE; Crocker WD; Pearson JM; Fitzpatrick DC
    Hear Res; 2006 Nov; 221(1-2):1-16. PubMed ID: 16978812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies.
    van Hoesel R; Böhm M; Pesch J; Vandali A; Battmer RD; Lenarz T
    J Acoust Soc Am; 2008 Apr; 123(4):2249-63. PubMed ID: 18397030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lateralization of binaural envelope cues measured with a mobile cochlear-implant research processora).
    Dennison SR; Thakkar T; Kan A; Litovsky RY
    J Acoust Soc Am; 2023 Jun; 153(6):3543-3558. PubMed ID: 37390320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human cortical sensitivity to interaural time difference in high-frequency sounds.
    Salminen NH; Altoè A; Takanen M; Santala O; Pulkki V
    Hear Res; 2015 May; 323():99-106. PubMed ID: 25668126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.