These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 1765797)

  • 1. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses.
    Guitton D; Munoz DP
    J Neurophysiol; 1991 Nov; 66(5):1605-23. PubMed ID: 1765797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; PĂ©lisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation.
    Munoz DP; Guitton D
    J Neurophysiol; 1991 Nov; 66(5):1624-41. PubMed ID: 1765798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of slow orienting eye movements by tectoreticulospinal neurons in the cat: behavior, discharge patterns and underlying connections.
    Olivier E; Grantyn A; Chat M; Berthoz A
    Exp Brain Res; 1993; 93(3):435-49. PubMed ID: 8519334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixation and orientation control by the tecto-reticulo-spinal system in the cat whose head is unrestrained.
    Munoz DP; Guitton D
    Rev Neurol (Paris); 1989; 145(8-9):567-79. PubMed ID: 2554460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaze-related activity of putative inhibitory burst neurons in the head-free cat.
    Cullen KE; Guitton D; Rey CG; Jiang W
    J Neurophysiol; 1993 Dec; 70(6):2678-83. PubMed ID: 8120607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat.
    Olivier E; Chat M; Grantyn A
    Exp Brain Res; 1991; 87(2):268-82. PubMed ID: 1722757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection.
    Meredith MA; Wallace MT; Stein BE
    Exp Brain Res; 1992; 88(1):181-6. PubMed ID: 1541354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus.
    Willis WD; Gerhart KD; Willcockson WS; Yezierski RP; Wilcox TK; Cargill CL
    J Neurophysiol; 1984 Mar; 51(3):467-80. PubMed ID: 6422009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal.
    Swadlow HA; Weyand TG
    J Neurophysiol; 1987 Apr; 57(4):977-1001. PubMed ID: 3585466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway.
    Dean P; Redgrave P; Sahibzada N; Tsuji K
    Neuroscience; 1986 Oct; 19(2):367-80. PubMed ID: 3774146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing characteristics of neurones in the superior colliculus and the pontomedullary reticular formation during orienting in unrestrained cats.
    Sasaki S; Naito K; Oka M
    Prog Brain Res; 1996; 112():99-116. PubMed ID: 8979823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and -fixed cat.
    Munoz DP; Guitton D
    Brain Res; 1986 Nov; 398(1):185-90. PubMed ID: 3801893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties.
    Grantyn A; Berthoz A
    Exp Brain Res; 1987; 66(2):339-54. PubMed ID: 3595779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How visual inputs to the ponto-bulbar reticular formation are used in the synthesis of premotor signals during orienting.
    Grantyn A
    Prog Brain Res; 1989; 80():159-70; discussion 127-8. PubMed ID: 2699363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of stimulation of frontal cortex, superior colliculus, and neck muscle afferents on interstitiospinal neurons in the cat.
    Fukushima K; Ohno M; Murakami S; Kato M
    Exp Brain Res; 1981; 44(2):143-53. PubMed ID: 7286102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal and somatic input to spinal neurons antidromically activated from the ventrolateral medulla.
    Ammons WS
    J Neurophysiol; 1988 Dec; 60(6):1967-81. PubMed ID: 2466963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superior colliculus and movements of the head and eyes in cats.
    Harris LR
    J Physiol; 1980 Mar; 300():367-91. PubMed ID: 6770082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burst activity of identified tecto-reticulo-spinal neurons in the alert cat.
    Grantyn A; Berthoz A
    Exp Brain Res; 1985; 57(2):417-21. PubMed ID: 3972042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.