BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17658468)

  • 1. The conserved glycine/alanine residue of the active-site loop containing the putative acetylCoA-binding motif is essential for the overall structural integrity of Mesorhizobium loti arylamine N-acetyltransferase 1.
    Atmane N; Dairou J; Flatters D; Martins M; Pluvinage B; Derreumaux P; Dupret JM; Rodrigues-Lima F
    Biochem Biophys Res Commun; 2007 Sep; 361(1):256-62. PubMed ID: 17658468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2.
    Goodfellow GH; Dupret JM; Grant DM
    Biochem J; 2000 May; 348 Pt 1(Pt 1):159-66. PubMed ID: 10794727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase.
    Fullam E; Westwood IM; Anderton MC; Lowe ED; Sim E; Noble ME
    J Mol Biol; 2008 Jan; 375(1):178-91. PubMed ID: 18005984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the structure of Mesorhizobium loti arylamine N-acetyltransferase 2 (MLNAT2): a biochemical and computational study.
    Dairou J; Flatters D; Chaffotte AF; Pluvinage B; Sim E; Dupret JM; Rodrigues-Lima F
    FEBS Lett; 2006 Mar; 580(7):1780-8. PubMed ID: 16513121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D model of human arylamine N-acetyltransferase 2: structural basis of the slow acetylator phenotype of the R64Q variant and analysis of the active-site loop.
    Rodrigues-Lima F; Dupret JM
    Biochem Biophys Res Commun; 2002 Feb; 291(1):116-23. PubMed ID: 11829470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity.
    Zhang N; Liu L; Liu F; Wagner CR; Hanna PE; Walters KJ
    J Mol Biol; 2006 Oct; 363(1):188-200. PubMed ID: 16959263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes: structure of Mesorhizobium loti arylamine N-acetyltransferase in complex with coenzyme A.
    Xu X; Li de la Sierra-Gallay I; Kubiak X; Duval R; Chaffotte AF; Dupret JM; Haouz A; Rodrigues-Lima F
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):266-73. PubMed ID: 25664736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance.
    Pluvinage B; Dairou J; Possot OM; Martins M; Fouet A; Dupret JM; Rodrigues-Lima F
    Biochemistry; 2007 Jun; 46(23):7069-78. PubMed ID: 17511472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural characterization of the arylamine N-acetyltransferase from the opportunistic pathogen Nocardia farcinica.
    Martins M; Pluvinage B; Li de la Sierra-Gallay I; Barbault F; Dairou J; Dupret JM; Rodrigues-Lima F
    J Mol Biol; 2008 Nov; 383(3):549-60. PubMed ID: 18778714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism p.Val231Ile alters substrate selectivity of drug-metabolizing arylamine N-acetyltransferase 2 (NAT2) isoenzyme of rhesus macaque and human.
    Tsirka T; Boukouvala S; Agianian B; Fakis G
    Gene; 2014 Feb; 536(1):65-73. PubMed ID: 24333853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1.
    Holton SJ; Dairou J; Sandy J; Rodrigues-Lima F; Dupret JM; Noble ME; Sim E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):14-6. PubMed ID: 16508079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes.
    Pluvinage B; Li de la Sierra-Gallay I; Kubiak X; Xu X; Dairou J; Dupret JM; Rodrigues-Lima F
    FEBS Lett; 2011 Dec; 585(24):3947-52. PubMed ID: 22062153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity alkylation of hamster hepatic arylamine N-acetyltransferases: isolation of a modified cysteine residue.
    Cheon HG; Boteju LW; Hanna PE
    Mol Pharmacol; 1992 Jul; 42(1):82-93. PubMed ID: 1635555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lysine(100) in the binding of acetylcoenzyme A to human arylamine N-acetyltransferase 1: implications for other acetyltransferases.
    Minchin RF; Butcher NJ
    Biochem Pharmacol; 2015 Apr; 94(3):195-202. PubMed ID: 25660616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the substrate specificity loop of the HAD superfamily cap domain.
    Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, functional expression and characterization of Mesorhizobium loti arylamine N-acetyltransferases: rhizobial symbiosis supplies leguminous plants with the xenobiotic N-acetylation pathway.
    Rodrigues-Lima F; Dairou J; Diaz CL; Rubio MC; Sim E; Spaink HP; Dupret JM
    Mol Microbiol; 2006 Apr; 60(2):505-12. PubMed ID: 16573698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N
    FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.