BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2104 related articles for article (PubMed ID: 17658698)

  • 1. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.
    Man YG; Gardner WA
    Med Hypotheses; 2008; 70(2):387-408. PubMed ID: 17658698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal degeneration of aged or injured myoepithelial cells and the resultant auto-immunoreactions are trigger factors for breast tumor invasion.
    Man YG
    Med Hypotheses; 2007; 69(6):1340-57. PubMed ID: 17493765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the "protease-centered" hypothesis.
    Man YG; Sang QX
    Exp Cell Res; 2004 Dec; 301(2):103-18. PubMed ID: 15530847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal prostate basal cell layer disruptions and leukocyte infiltration are correlated events: A potential mechanism for basal cell layer disruptions and tumor invasion.
    Man YG; Shen T; Zhao Y; Amy Sang QX
    Cancer Detect Prev; 2005; 29(2):161-9. PubMed ID: 15829376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical characterization of canine prostatic intraepithelial neoplasia.
    Matsuzaki P; Cogliati B; Sanches DS; Chaible LM; Kimura KC; Silva TC; Real-Lima MA; Hernandez-Blazquez FJ; Laufer-Amorim R; Dagli ML
    J Comp Pathol; 2010 Jan; 142(1):84-8. PubMed ID: 19643431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential impact of tumor-infiltrating immune cells on basal and luminal cells: implications for tumor invasion and metastasis.
    Song G; Hsiao H; Wang JL; Mannion C; Stojadinovic A; Avital I; Fu SW; Mason J; Chen W; Jewett A; Li H; Man YG
    Anticancer Res; 2014 Nov; 34(11):6363-80. PubMed ID: 25368236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model.
    Narayanan BA; Narayanan NK; Pittman B; Reddy BS
    Clin Cancer Res; 2004 Nov; 10(22):7727-37. PubMed ID: 15570007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model.
    Bonkhoff H; Remberger K
    Prostate; 1996 Feb; 28(2):98-106. PubMed ID: 8604398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations.
    Shibata MA; Ward JM; Devor DE; Liu ML; Green JE
    Cancer Res; 1996 Nov; 56(21):4894-903. PubMed ID: 8895741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptotic regulators in prostatic intraepithelial neoplasia (PIN): value in prostate cancer detection and prevention.
    Zeng L; Kyprianou N
    Prostate Cancer Prostatic Dis; 2005; 8(1):7-13. PubMed ID: 15477876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia.
    Song Z; Wu X; Powell WC; Cardiff RD; Cohen MB; Tin RT; Matusik RJ; Miller GJ; Roy-Burman P
    Cancer Res; 2002 Sep; 62(17):5096-105. PubMed ID: 12208767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant expression of chromogranin A, miR-146a, and miR-146b-5p in prostate structures with focally disrupted basal cell layers: an early sign of invasion and hormone-refractory cancer?
    Man YG; Fu SW; Liu AJ; Stojadinovic A; Izadjoo MJ; Chen L; Gardner WA
    Cancer Genomics Proteomics; 2011; 8(5):235-44. PubMed ID: 21980038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival.
    Bacac M; Provero P; Mayran N; Stehle JC; Fusco C; Stamenkovic I
    PLoS One; 2006 Dec; 1(1):e32. PubMed ID: 17183660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subset of in situ breast tumor cell clusters lacks expression of proliferation and progression related markers but shows signs of stromal and vascular invasion.
    Man YG; Shen T; Weisz J; Berg PE; Schwartz AM; Mulshine JL; Sang QX; Nieburgs HE
    Cancer Detect Prev; 2005; 29(4):323-31. PubMed ID: 16122886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bad seeds produce bad crops: a single stage-process of prostate tumor invasion.
    Man YG; Gardner WA
    Int J Biol Sci; 2008 Aug; 4(4):246-58. PubMed ID: 18725981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective origins of prostate carcinoma. Prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia.
    Bostwick DG
    Cancer; 1996 Jul; 78(2):330-6. PubMed ID: 8674012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dedifferentiation of stromal smooth muscle as a factor in prostate carcinogenesis.
    Wong YC; Tam NN
    Differentiation; 2002 Dec; 70(9-10):633-45. PubMed ID: 12492504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvessel density as a molecular marker for identifying high-grade prostatic intraepithelial neoplasia precursors to prostate cancer.
    Sinha AA; Quast BJ; Reddy PK; Lall V; Wilson MJ; Qian J; Bostwick DG
    Exp Mol Pathol; 2004 Oct; 77(2):153-9. PubMed ID: 15351240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer.
    Das S; Roth CP; Wasson LM; Vishwanatha JK
    Prostate; 2007 Oct; 67(14):1550-64. PubMed ID: 17705178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 106.