These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides. Rohde H; Seitz O Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols. Tsuda S; Yoshiya T; Mochizuki M; Nishiuchi Y Org Lett; 2015 Apr; 17(7):1806-9. PubMed ID: 25789929 [TBL] [Abstract][Full Text] [Related]
6. Facile synthesis of membrane-embedded peptides utilizing lipid bilayer-assisted chemical ligation. Otaka A; Ueda S; Tomita K; Yano Y; Tamamura H; Matsuzaki K; Fujii N Chem Commun (Camb); 2004 Aug; (15):1722-3. PubMed ID: 15278155 [TBL] [Abstract][Full Text] [Related]
7. Dual kinetically controlled native chemical ligation using a combination of sulfanylproline and sulfanylethylanilide peptide. Ding H; Shigenaga A; Sato K; Morishita K; Otaka A Org Lett; 2011 Oct; 13(20):5588-91. PubMed ID: 21916452 [TBL] [Abstract][Full Text] [Related]
9. Acceleration of thiol additive-free native chemical ligation by intramolecular S → S acyl transfer. Schmalisch J; Seitz O Chem Commun (Camb); 2015 May; 51(35):7554-7. PubMed ID: 25846105 [TBL] [Abstract][Full Text] [Related]
10. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis. Jin K; Li X Chemistry; 2018 Nov; 24(66):17397-17404. PubMed ID: 29947435 [TBL] [Abstract][Full Text] [Related]
11. Trimethoxyphenylthio as a highly labile replacement for tert-butylthio cysteine protection in Fmoc solid phase synthesis. Postma TM; Giraud M; Albericio F Org Lett; 2012 Nov; 14(21):5468-71. PubMed ID: 23075145 [TBL] [Abstract][Full Text] [Related]
12. Effect of copper salts on peptide bond formation using peptide thioesters. Ingenito R; Wenschuh H Org Lett; 2003 Nov; 5(24):4587-90. PubMed ID: 14627390 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular addition of cysteine thiyl radicals to phenylalanine in peptides: formation of cyclohexadienyl type radicals. Nauser T; Casi G; Koppenol WH; Schöneich C Chem Commun (Camb); 2005 Jul; (27):3400-2. PubMed ID: 15997277 [TBL] [Abstract][Full Text] [Related]
14. Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins. Malins LR; Payne RJ Curr Opin Chem Biol; 2014 Oct; 22():70-8. PubMed ID: 25285753 [TBL] [Abstract][Full Text] [Related]
15. Rapid synthesis of acyl transfer auxiliaries for cysteine-free native glycopeptide ligation. Macmillan D; Anderson DW Org Lett; 2004 Dec; 6(25):4659-62. PubMed ID: 15575654 [TBL] [Abstract][Full Text] [Related]
16. Protein synthesis assisted by native chemical ligation at leucine. Harpaz Z; Siman P; Kumar KS; Brik A Chembiochem; 2010 Jun; 11(9):1232-5. PubMed ID: 20437446 [No Abstract] [Full Text] [Related]
17. Ascorbate as an alternative to thiol additives in native chemical ligation. Rohde H; Schmalisch J; Harpaz Z; Diezmann F; Seitz O Chembiochem; 2011 Jun; 12(9):1396-400. PubMed ID: 21557429 [No Abstract] [Full Text] [Related]
18. Enantioselective Rauhut-Currier reactions promoted by protected cysteine. Aroyan CE; Miller SJ J Am Chem Soc; 2007 Jan; 129(2):256-7. PubMed ID: 17212388 [No Abstract] [Full Text] [Related]
19. A simple method for preparing peptide C-terminal thioacids and their application in sequential chemoenzymatic ligation. Tan XH; Zhang X; Yang R; Liu CF Chembiochem; 2008 May; 9(7):1052-6. PubMed ID: 18398882 [No Abstract] [Full Text] [Related]