These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17658822)

  • 1. Dietary fiber from coffee beverage: degradation by human fecal microbiota.
    Gniechwitz D; Reichardt N; Blaut M; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Aug; 55(17):6989-96. PubMed ID: 17658822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and fermentability of an ethanol soluble high molecular weight coffee fraction.
    Gniechwitz D; Reichardt N; Meiss E; Ralph J; Steinhart H; Blaut M; Bunzel M
    J Agric Food Chem; 2008 Jul; 56(14):5960-9. PubMed ID: 18558695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota.
    Reichardt N; Gniechwitz D; Steinhart H; Bunzel M; Blaut M
    Mol Nutr Food Res; 2009 Feb; 53(2):287-99. PubMed ID: 18985654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures.
    Gniechwitz D; Brueckel B; Reichardt N; Blaut M; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Dec; 55(26):11027-34. PubMed ID: 18052037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary fiber in brewed coffee.
    Díaz-Rubio ME; Saura-Calixto F
    J Agric Food Chem; 2007 Mar; 55(5):1999-2003. PubMed ID: 17295507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a new potential functional ingredient: coffee silverskin.
    Borrelli RC; Esposito F; Napolitano A; Ritieni A; Fogliano V
    J Agric Food Chem; 2004 Mar; 52(5):1338-43. PubMed ID: 14995143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system.
    McBurney MI
    Nutrition; 1991; 7(6):421-4. PubMed ID: 1666322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches.
    Chassard C; Scott KP; Marquet P; Martin JC; Del'homme C; Dapoigny M; Flint HJ; Bernalier-Donadille A
    FEMS Microbiol Ecol; 2008 Dec; 66(3):496-504. PubMed ID: 18811647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.
    Bourquin LD; Titgemeyer EC; Fahey GC
    J Nutr; 1993 May; 123(5):860-9. PubMed ID: 8387579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption.
    Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M
    Mutat Res; 2007 Nov; 624(1-2):41-8. PubMed ID: 17475287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical characterization of galactomannans and arabinogalactans from two arabica coffee infusions as affected by the degree of roast.
    Nunes FM; Coimbra MA
    J Agric Food Chem; 2002 Mar; 50(6):1429-34. PubMed ID: 11879015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of coffee consumption on the gut microbiota: a human volunteer study.
    Jaquet M; Rochat I; Moulin J; Cavin C; Bibiloni R
    Int J Food Microbiol; 2009 Mar; 130(2):117-21. PubMed ID: 19217682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential prebiotic activity of oligosaccharides obtained by enzymatic conversion of durum wheat insoluble dietary fibre into soluble dietary fibre.
    Napolitano A; Costabile A; Martin-Pelaez S; Vitaglione P; Klinder A; Gibson GR; Fogliano V
    Nutr Metab Cardiovasc Dis; 2009 May; 19(4):283-90. PubMed ID: 18805682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora.
    Wong KH; Wong KY; Kwan HS; Cheung PC
    J Agric Food Chem; 2005 Nov; 53(24):9407-12. PubMed ID: 16302755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary fibre and fermentability characteristics of root crops and legumes.
    Mallillin AC; Trinidad TP; Raterta R; Dagbay K; Loyola AS
    Br J Nutr; 2008 Sep; 100(3):485-8. PubMed ID: 18331664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of dietary intake of melanoidins from coffee and bread.
    Fogliano V; Morales FJ
    Food Funct; 2011 Feb; 2(2):117-23. PubMed ID: 21779556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of galactomannan derivatives in roasted coffee beverages.
    Nunes FM; Reis A; Domingues MR; Coimbra MA
    J Agric Food Chem; 2006 May; 54(9):3428-39. PubMed ID: 16637704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakdown of polysaccharides by human intestinal bacteria.
    Salyers AA
    J Environ Pathol Toxicol Oncol; 1985 Jul; 5(6):211-31. PubMed ID: 2995637
    [No Abstract]   [Full Text] [Related]  

  • 20. In vitro fermentation of bacterial cellulose composites as model dietary fibers.
    Mikkelsen D; Gidley MJ; Williams BA
    J Agric Food Chem; 2011 Apr; 59(8):4025-32. PubMed ID: 21417282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.