These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 17658854)
21. Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the alpha-glucosidase inhibitory activity. Tanabe G; Yoshikai K; Hatanaka T; Yamamoto M; Shao Y; Minematsu T; Muraoka O; Wang T; Matsuda H; Yoshikawa M Bioorg Med Chem; 2007 Jun; 15(11):3926-37. PubMed ID: 17416527 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of new nitrogen analogues of salacinol and deoxynojirimycin and their evaluation as glycosidase inhibitors. Gallienne E; Gefflaut T; Bolte J; Lemaire M J Org Chem; 2006 Feb; 71(3):894-902. PubMed ID: 16438498 [TBL] [Abstract][Full Text] [Related]
23. Biological evaluation of 3'-O-alkylated analogs of salacinol, the role of hydrophobic alkyl group at 3' position in the side chain on the α-glucosidase inhibitory activity. Tanabe G; Otani T; Cong W; Minematsu T; Ninomiya K; Yoshikawa M; Muraoka O Bioorg Med Chem Lett; 2011 May; 21(10):3159-62. PubMed ID: 21454075 [TBL] [Abstract][Full Text] [Related]
24. Probing the active-site requirements of human intestinal N-terminal maltase-glucoamylase: Synthesis and enzyme inhibitory activities of a six-membered ring nitrogen analogue of kotalanol and its de-O-sulfonated derivative. Mohan S; Sim L; Rose DR; Pinto BM Bioorg Med Chem; 2010 Nov; 18(22):7794-8. PubMed ID: 20970346 [TBL] [Abstract][Full Text] [Related]
25. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Eskandari R; Jones K; Rose DR; Pinto BM Chem Commun (Camb); 2011 Aug; 47(32):9134-6. PubMed ID: 21750824 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and biological evaluation of heteroanalogues of kotalanol and de-O-sulfonated kotalanol. Mohan S; Jayakanthan K; Nasi R; Kuntz DA; Rose DR; Pinto BM Org Lett; 2010 Mar; 12(5):1088-91. PubMed ID: 20143790 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of selenium analogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. Johnston BD; Ghavami A; Jensen MT; Svensson B; Pinto BM J Am Chem Soc; 2002 Jul; 124(28):8245-50. PubMed ID: 12105902 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis, and evaluation as glycosidase inhibitors. Szczepina MG; Johnston BD; Yuan Y; Svensson B; Pinto BM J Am Chem Soc; 2004 Oct; 126(39):12458-69. PubMed ID: 15453780 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of novel ammonium and selenonium ions and their evaluation as inhibitors of UDP-galactopyranose mutase. Veerapen N; Yuan Y; Sanders DA; Pinto BM Carbohydr Res; 2004 Sep; 339(13):2205-17. PubMed ID: 15337448 [TBL] [Abstract][Full Text] [Related]
30. Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. Jayakanthan K; Mohan S; Pinto BM J Am Chem Soc; 2009 Apr; 131(15):5621-6. PubMed ID: 19331410 [TBL] [Abstract][Full Text] [Related]
31. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Sim L; Jayakanthan K; Mohan S; Nasi R; Johnston BD; Pinto BM; Rose DR Biochemistry; 2010 Jan; 49(3):443-51. PubMed ID: 20039683 [TBL] [Abstract][Full Text] [Related]
32. Attempted synthesis of 2-acetamido and 2-amino derivatives of salacinol. Ring opening reactions. Choubdar N; Pinto BM J Org Chem; 2006 Jun; 71(12):4671-4. PubMed ID: 16749804 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of nitrogen analogues of salacinol and their evaluation as glycosidase inhibitors. Ghavami A; Johnston BD; Jensen MT; Svensson B; Pinto BM J Am Chem Soc; 2001 Jul; 123(26):6268-71. PubMed ID: 11427050 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of aza- and thia-spiroheterocycles and attempted synthesis of spiro sulfonium compounds related to salacinol. Chen W; Pinto BM Carbohydr Res; 2007 Nov; 342(15):2163-72. PubMed ID: 17669386 [TBL] [Abstract][Full Text] [Related]
35. Probing the active-site requirements of human intestinal N-terminal maltase glucoamylase: the effect of replacing the sulfate moiety by a methyl ether in ponkoranol, a naturally occurring α-glucosidase inhibitor. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2010 Oct; 20(19):5686-9. PubMed ID: 20801033 [TBL] [Abstract][Full Text] [Related]
36. Docking and SAR studies of salacinol derivatives as alpha-glucosidase inhibitors. Nakamura S; Takahira K; Tanabe G; Morikawa T; Sakano M; Ninomiya K; Yoshikawa M; Muraoka O; Nakanishi I Bioorg Med Chem Lett; 2010 Aug; 20(15):4420-3. PubMed ID: 20598536 [TBL] [Abstract][Full Text] [Related]
37. Facile synthesis of sulfonium ion derivatives of 1,5-anhydro-5-thio-L-fucitol as potential alpha-L-fucosidase inhibitors. Gu G; Liu H; Pinto BM Carbohydr Res; 2006 Nov; 341(15):2478-86. PubMed ID: 16930571 [TBL] [Abstract][Full Text] [Related]
38. Towards the elusive structure of kotalanol, a naturally occurring glucosidase inhibitor. Mohan S; Pinto BM Nat Prod Rep; 2010 Apr; 27(4):481-8. PubMed ID: 20336233 [TBL] [Abstract][Full Text] [Related]
39. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
40. A new class of glycosidase inhibitor: synthesis of salacinol and its stereoisomers. Ghavami A; Johnston BD; Pinto BM J Org Chem; 2001 Apr; 66(7):2312-7. PubMed ID: 11281771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]