These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 17658854)
41. Facile synthesis of de-O-sulfated salacinols: revision of the structure of neosalacinol, a potent alpha-glucosidase inhibitor. Tanabe G; Xie W; Ogawa A; Cao C; Minematsu T; Yoshikawa M; Muraoka O Bioorg Med Chem Lett; 2009 Apr; 19(8):2195-8. PubMed ID: 19307117 [TBL] [Abstract][Full Text] [Related]
42. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase-glucoamylase and sucrase-isomaltase: synthesis and inhibitory properties of 3'- and 5'-maltose-extended de-O-sulfonated ponkoranol. Eskandari R; Jones K; Reddy KR; Jayakanthan K; Chaudet M; Rose DR; Pinto BM Chemistry; 2011 Dec; 17(52):14817-25. PubMed ID: 22127878 [TBL] [Abstract][Full Text] [Related]
43. Synthesis of a nitrogen analogue of salacinol and its alpha-glucosidase inhibitory activity. Muraoka O; Ying S; Yoshikai K; Matsuura Y; Yamada E; Minematsu T; Tanabe G; Matsuda H; Yoshikawa M Chem Pharm Bull (Tokyo); 2001 Nov; 49(11):1503-5. PubMed ID: 11724251 [TBL] [Abstract][Full Text] [Related]
45. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Jones K; Sim L; Mohan S; Kumarasamy J; Liu H; Avery S; Naim HY; Quezada-Calvillo R; Nichols BL; Pinto BM; Rose DR Bioorg Med Chem; 2011 Jul; 19(13):3929-34. PubMed ID: 21669536 [TBL] [Abstract][Full Text] [Related]
46. In silico design, synthesis and evaluation of 3'-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine "Salacia". Tanabe G; Nakamura S; Tsutsui N; Balakishan G; Xie W; Tsuchiya S; Akaki J; Morikawa T; Ninomiya K; Nakanishi I; Yoshikawa M; Muraoka O Chem Commun (Camb); 2012 Sep; 48(69):8646-8. PubMed ID: 22820468 [TBL] [Abstract][Full Text] [Related]
47. Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine "Salacia," against human intestinal maltase. Takashima K; Sakano M; Kinouchi E; Nakamura S; Marumoto S; Ishikawa F; Ninomiya K; Nakanishi I; Morikawa T; Tanabe G Bioorg Med Chem Lett; 2021 Feb; 33():127751. PubMed ID: 33347966 [TBL] [Abstract][Full Text] [Related]
48. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Xie W; Tanabe G; Matsuoka K; Amer MF; Minematsu T; Wu X; Yoshikawa M; Muraoka O Bioorg Med Chem; 2011 Apr; 19(7):2252-62. PubMed ID: 21420866 [TBL] [Abstract][Full Text] [Related]
49. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Part 2. Tanabe G; Matsuoka K; Yoshinaga M; Xie W; Tsutsui N; A Amer MF; Nakamura S; Nakanishi I; Wu X; Yoshikawa M; Muraoka O Bioorg Med Chem; 2012 Nov; 20(21):6321-34. PubMed ID: 23031648 [TBL] [Abstract][Full Text] [Related]
50. Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Eskandari R; Kuntz DA; Rose DR; Pinto BM Org Lett; 2010 Apr; 12(7):1632-5. PubMed ID: 20218632 [TBL] [Abstract][Full Text] [Related]
52. The first synthesis of substituted azepanes mimicking monosaccharides: a new class of potent glycosidase inhibitors. Li H; Blériot Y; Chantereau C; Mallet JM; Sollogoub M; Zhang Y; Rodríguez-García E; Vogel P; Jiménez-Barbero J; Sinaÿ P Org Biomol Chem; 2004 May; 2(10):1492-9. PubMed ID: 15136805 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and conformational analysis of bicyclic sulfonium salts. Structures related to the glycosidase inhibitor australine. Kumar NS; Pinto BM J Org Chem; 2006 Apr; 71(8):2935-43. PubMed ID: 16599585 [TBL] [Abstract][Full Text] [Related]
54. Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Minami Y; Kuriyama C; Ikeda K; Kato A; Takebayashi K; Adachi I; Fleet GW; Kettawan A; Okamoto T; Asano N Bioorg Med Chem; 2008 Mar; 16(6):2734-40. PubMed ID: 18258441 [TBL] [Abstract][Full Text] [Related]
55. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Xie W; Tanabe G; Akaki J; Morikawa T; Ninomiya K; Minematsu T; Yoshikawa M; Wu X; Muraoka O Bioorg Med Chem; 2011 Mar; 19(6):2015-22. PubMed ID: 21345683 [TBL] [Abstract][Full Text] [Related]
56. Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Yoshikawa M; Morikawa T; Matsuda H; Tanabe G; Muraoka O Bioorg Med Chem; 2002 May; 10(5):1547-54. PubMed ID: 11886816 [TBL] [Abstract][Full Text] [Related]
57. New N-(phenoxydecyl)phthalimide derivatives displaying potent inhibition activity towards alpha-glucosidase. Pascale R; Carocci A; Catalano A; Lentini G; Spagnoletta A; Cavalluzzi MM; De Santis F; De Palma A; Scalera V; Franchini C Bioorg Med Chem; 2010 Aug; 18(16):5903-14. PubMed ID: 20667739 [TBL] [Abstract][Full Text] [Related]
58. Thiosugars: new perspectives regarding availability and potential biochemical and medicinal applications. Witczak ZJ; Culhane JM Appl Microbiol Biotechnol; 2005 Dec; 69(3):237-44. PubMed ID: 16240117 [TBL] [Abstract][Full Text] [Related]
59. Flexible synthesis and biological evaluation of novel 5-deoxyadenophorine analogues. Pearson MS; Saad RO; Dintinger T; Amri H; Mathé-Allainmat M; Lebreton J Bioorg Med Chem Lett; 2006 Jun; 16(12):3262-7. PubMed ID: 16603357 [TBL] [Abstract][Full Text] [Related]
60. A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Wen X; Yuan Y; Kuntz DA; Rose DR; Pinto BM Biochemistry; 2005 May; 44(18):6729-37. PubMed ID: 15865418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]